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FOREWORD

The work described in this report was accomplished by members of the
Dunham Laboratory, Yale University under subcontract to the SUBIC
program (contract NOnr 2512(00)) for which the Office of Naval Re-
search is the sponsor and General Dynamics/Electric Boat the prime
contractor. Cdr F. R. Haselton, Jr., USN, is Project Officer for
ONR; Dr. A. J. van Woerkom is Proje._t Coordinator for Electric Boat
and Chief Scientist of the Applied Sciences Department.

The SUBIC program encocmpasses all aspects of submarine system analysis.
This report is one of a series dealing with acoustic signal prccessing.
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ABSTRACT

This report describes work concerned with the detection of a single
target in an isotropic nolise fleld. 1In each case studied, the data
source was assumed to be a given array of omnidirectional hydrophones,
but many different schemes for processing the various hydrophone out-
puts were considered. The problems investigated involved comparison
of optimum detectors with standard detectors and comparison of detec-
tors operating on clipped and unclipped hydrophone data, or, more
generally, hydrophone data that have been operated upon by an arbi-
trary non-linear device.' The results of these comparisons are de-
scribed in detail.
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The following is a summary of work performed under contract 53-00.-10-0231
btetween Yale University and the Electric Boat Company during the period
21 Jamuary 1963 to 1 July 1963, Detailed results and supporting arguments
for the various conclusions are contained in a series of seven progress
reports that are appended,

With minor exceptions the work reported on was all cencerned with the
detection of a single target in an isotropic noise field., In each case the
data source was assumed to be a given array of omnidirectional hydrophones,
but many different schemes for processing the various hydrophone ocutputs
were considered. The basic assumptions concerning the propertles of ncise
and target signal fell into cne of two general categories:

A, Both signal and noise ere independent staticnary Gaussian random
variables; the signal is directional, *he noise isotropic. 1In
this case the statistical properties of signal and noise are
completely specified by a statement of total power and spectral
properties,

B. Signal and noise have one component satisfying condition A,

In addition’each may contain one or more periodic components in
the low frequency band 0 < f §:Wi cpse Furthermore the random
component of the signal in the high frequency band W:L st $W2
cps may be modulated in amplitude by one of the periodic low
frequency components of the signal,
Assumption A clearly constitutes a minimal description of signal and noise
and therefore leads to detection schemes of only moderate efficiency. On
the other hand, knowledge oX power and spectral properiies may be very nearly

all that is availabley in fact, even this knowledge may be quite imperfect.



«The best detection scheme under assumption A therefore sets realistic bounds
on attainable detectability in many situations of practical interest.

Assumption B represents an attempt to obtain more refined detection

procedures by specifying additional esignal properties that do occur in
important practical cases, The signal emitted by a moving ship contains
periodic or quasi-periodic low frequency components generated by the
propeller and other mechanical components, Amplitude modulation of the
high frequency range at the propeller frequency is also a commonly
observed phenomenon in such situations. Periodic or quasi-periodic noise
components are often generated by moving machinery on the observing ship.

The problems investigated may also be divided into two broad classes:

a) Comparison of optimum detectors with standard detectors. The
term "optimum detector" is interpreted as a likelihood ratio
detector operating on the outpuuvs of an array of hydrophones
mechanically or electrically steered "¢n target." The "standard
detector" operates on the output of the same hydrophone array by
adding, squaring and then smoothing by means of a low pass
filter, A block diagram of a standard detector is shown in
Fig., 1 of Progress Report No. 3.

b) Comparison of detectors operating on clipped and unclipped
hydirophone data, or, more generally, hydrophone data that have
been operated upon by an arbitrary nonlinear devics, Where no
remarks to the contrary appear, compariscns are always based
on rms or mean square signal to noise ratio at the dztector output.
The input signal to noise ratio at each hydrophone is assumed to

be 'small,
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1) Comparison of optimum and standard detector under assurpt.c:.

- e

This forms the subject matter of Progress Report No, 3. Using re:.tir
given by Brynl the figure cof merit (rms signal to noise ratio) of the

optimum detector for reasonably long observation times can be written in
the form w, :
2
N /—2- f__ZS(co G(w)} cw
2n LN(w)
o

T is the observation time in seconds, @ and W, are the lower and upper

endpoints of the processed frequency interval in rad/sec, S(w) and N(w)
are the input signal and noise spectra at each hydrophone, G(w) is the
array gain, a quantity introduced by Bryn and defined a8 the ratio of the
contribubions of signal and noise to the average cdetector output normalized
with respect to the input signal tc noise ratio at each hydrophcne.

Several features of the above expression are significant. The factor
V?F indicates the usual dependence of statistical fluctuation on sample
size. The fact that the integrand is non-negative shcws that the detector
should utilize all frequencies where S(w) does not vanish idei:tically.,
In cases of great practical interest G(w) varies enly slowly and over a
moderate total range., Hence the greatest contribution to the integral
is made by frequency ranges where the input signal to noise ratio is
relatively large, It is clear that changes in signal or noise spectira are
important only to the extent that they affect the integial., Thus knowledge

of the detailed structurz of signal and noise epecira is of limited value

1F. Bryn, "Optimal Signsl Processing by Three-Dimensional Arrays
Operating on Gaussian Signais and Noise," J, Accust, Soc., Am,, vol. 3L,
no, 3, March 1962 pp. 289-297,




in detection, Even the knowledge that the signal c ontains a very narrow-
band component, 80 that S(w)/N(w) is large over a narrow band, contribuvtes
1little to the solution of the detection problem unless the narrow-band
component contains a significant fraction of the total signal power (or
the noise power level happens to be exceptionally low in the frequency
range of the narrow-band signal),

The array gain G(w) is larger for the optimum detector than for the

standard detector using the same set of hydrophones, particularly at low

frequencies, This effect may be attritmted quelitatively to the circumstance

that the optimum detector tends to recduce the effect of noise correlation
between different hydrophiones, The phenomenon is clearly most pronounced
at low freqx;enciesol Thus the optimum detector is superior to the standard
detector in two respects: 1) It can combat noise correlation between
hydrophones and 2) it can utilize variations in input signal to noise ratio
over the processed frequency bande2 Significant differences in pérformance
between the pwo types of detectors will arise only when one or both of
these factors are important,

If signal and noise spectra are both flat over a frequency band
Osows ®, and vanish for o > @ and if R is sufficiently large so
that the noise correlation between hydrophones is negligible, neither one
of the above factors is operative and the performance of optimum and

. =
standard detectors is identical, tReport No. 3, Eqo (55)}. If the noise

lAt high frequencies, where there is no noise correlation between

hydrophones, the array gain simply egquals the number of elements in the
arrayo

2The standard detector is sensitive primarily to total power. Spectral
properties affect its design only to the extent that they determine what
frequency range should be processed,
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has the specified properties but the signal deviates from the flat
spectrum, the optimum detector is better by an amount depending on the
extent of the deviation [.Eq. (58)]0

If signal and nolse spectra are not bandlimited, the figure of merit
of the optimal detector can have a peculiar property., Consider for
example the case (quite closely approximated in situations of practical
interest ) of signal and noise spectra identical in shape. Since G(w)
approaches a constant equal to the number of hydrophones as w-,
the figure of merit clearly approaches infinity as ab—9¢>. This says
that detection can be accomplished to an arbitrary degree of certainty
in any finite time, The statement becomes reasonable as soon as one
recognizes that the assumptions imply equal input signal to noise ratie
in every frequency band. Thus the optimum detector can in principle
extract as much useful information by obserwving a 100 cps band at
extremely high frequencies; where signal and noise power are both
negligibie, as by observing a comparable band near zero frequency where
both signal and noise power are substantial.

This example illustrates a common danger in the use of optimal
procedures: Assumptions that appear at first glance quite innocuous
may have exceedingly far-reaching consequences, In important practical
problems the signal and noise spectra are in fact closely similar over
the frequency range where most of their power is concentrated, At high

frequencies, however, the signal spectrum inevitably falls off faster

than the noise spectrum, if only btecause of white noise locally generated

in the circuitry, and this =ffect beéomes crucial when one works with

optimal techniques.



In order to obtain realistic couparisons one must therefore restrict
the optimum detector to the frequency range over which the postulated
spectra may be expected to describe the actual state of affairs with
reasonable accuracy. Specific calculatlons were carried out under the
assﬁmption that signal and noise spuctra both fall off with the second
power of frequency above 1500 cps. When the frequency range processed by
the optimum detector extends to 5000 cps its figure of merit then has a
value 2.6 times that of the standard detector, When the preccessed frequency
range extends to 10,000 ecps the corresponding figure is 3.8. (Report No. 3,
pages 28-29),

In order to avoid the somswhat arbitrary assignment of an upper
frequency limit, a second approach was also taken, By using a model of the
transmission characteristics ¢f sea water proposed by Eckart (Report No. 3,
pe 29, footnote 2) one can obtain a modification of the high frequency
characteristics of the signal spectrum that removes the basic difficulty
and leads to a finite result, even when an infinite frequency range is
processed, The ratio of performance indices of the optimum and standard
detector is now range dependent [Eq. (9h)] but varies only from a value
somewhat less than 2 to about 8 for the variations of range for which the
analytical assumptions are likely to be valid, Thus the two lines of
analysis lead to quite comparable results, and one comes to the conclusion
that improvements of this order of magnitude cannot be exceeded unless
signal and noise spectra differ drastically from the assumed form,

The foregoing comments should not be construed to infer that
improvements by factors of 2 to 8 are unimportant. If they were realizable

by even moderately simple instrumentations, they would be quite significant,

O
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However, in interpreting these figures it is necessary to keep in mind
two factors: a) The larger improvement figures correspond to conditions
such as extremely close range or identical shape of signal and noise
spectra over a very wide frequency band, conditions that are either of
limited interest or unlikely to be satisfied in practice, b) The
optimzl instrumentation i3 likely to be very complicated. In practice,
therefore, one is likely to pay a very high price in complexit& of
instrumentaticn for only limitecd gain in performance,

2) Comparison of ophimim and standard detector under assumption B,

The effoct to explcit the presence in the target sigmal of low
frequency periodic functions and amplitude modulation, by one cf these,
of the high frequeﬁcy range has taken two distinct directions,

a) A study was made of the optimum scheme for detecting a Gaussian

signal amplitude modulated by a sinusoid in the usual isctropic
Gaussian noise backgrcund., This is very nearly equivalent to an

optimum detector processing only the frequency range W, <f W

1 2
of assumption B. 1In practice the frequency'Wi would be sufficiently
low so that the power of the random signal component in 0 < f 5:Wi

would be a small fraction of the total signal power, However, the
periodic low frequency comporents of the signal, which could well
be important to the detection process, are ignored, The reason
for considering a detection process neglecting such important
information is that the frequencies of the periodic signal
components are not known a priori and that the self noise
generated near the receiver is likely to contain very strong
periodic componerts in the same frejuency range so that the

filtering problem would be very formidable,



b) An attempt was made to utilize the low frequency periodic signal
components as well as the high frequency amplitude modulation
without requiring either knowledge of the frequencics of the
periodlc components or identification and removal of the periodic

© self noise, The analyzed system is not optimal, btut it has at
least same of the features that one would expect to find in an
optimal system,

The approach deseribed under a) is covered in detail by Progress

Report No. 5, The follcwing specific cases are consideresd:

i) Noise and unmodulated signal both have the properties of white
noise limited to the same band, The receiving array consists of
a single hydrophone.

ii) Signal and noise have the same properties as in i), There are
K hydrophones spaced sﬁfficiently far apart so that the noise
correlation between different hydrophones is negligible,

iii) The noise and array properties are the same as in ii) but the
unmodulated signal spectrum falls off witn the second power of
frequency atove a certain point.

iv) The unmodulated signal has the properties of i) but the noise
spectrum falls off with the second power of frequency above a
certain point, The receiving array consists of a single
hydrophcne,

In cases i), ii), and iv) the ratio of the figure of merit of the

optimum detector to that of an optimum detector aperating on the
4

ummodulated signal in the same noise background is approximately 1 + 5 b,

[Progress Report No. 5, Egs. (30), (39) and (5).;)]U The symbol b is the
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modulation index, a number certainly less than unity and in most practical
ca;es substantially less than unity. Thus only a very limited improvement
in detectability results from use of the knowledge that the -signal is
periédically amplitude modulated., Ir. case iii) the improvement ratio is
even smaller [Eq. (hh)], More complicated cases have not besn analyzed,
but there is no reason to expect sighificantly different conclusions,

The result appears even more decisive if one considers that the
analysis assumed purely sinusoidal modulation of known amplitude, frequency
and phase, In practice the phase and amplitude would certainly be unknown
and the frequency would most likely be known only to lie between certain
limits, The effect of these uncertainties would be a further degradation
in the detectability index. Thus one is forced to the conclusion that the
existence of periodic amplitude modulation of the randem target signal is,
by itself at least, of litile value in target detection.

The reason for this phenomencn becomes clearer if one considers the
instrumentation required for optimum detection. For case i) it is given
by the simple configuration shown in Fig, 1 of Progress Report No. 5
(p. 11). The circuit evidently consists of a standard power detector
followed by an arrangement for coherent detection of the enveiope. Thus
the basic detection scheme is incoherent and the slight gain over a
simple power detector results only from the secondary coherent detection
operation on the envelope. The latter would obviously be degraded by lack
of knowledge of envelcpe amplitude, phase or frequency,

Progress Report No, 7 dsals with the second approach (b) to the
problem of utilizing the added information supplied by assumption B,

It postulates the specific instrumentation shown in Fig, 1 of the report,



The outputs of the various array elements are added and the resulting

signal is split into the two frequency ranges O =< f swl and Wl <f SWZ’
The high frequency range, with its sinusoidal amplitude modulation, is
processed by a standard power detector., The output of this detector
contains the modulating signal in addition to fluctuating componsnte,

It is used to multiply the signal carried by the low frequency channel,
which contains a sinusoidal component at the modulation frequency.

Thus the high frequency chamnel is used to generate a sinusoidal "reference"
for the coherent demodulation of the simsoidal low frequency component

of the signal. The attractive feature of this scheme is that the low
frequency simusoid and the "reference" automatically assume the same
frequency, It is not necessary to have a priori knowledge about this
frequency, and the presence of sinusoidal noise components in the low
frequency range presents only a secondary probiem, as long as they do not
coincide .too closely with the signal sinusoid, Only the assumption that
low frequency sinusoid and modulation envelope are in phase may be somewhat
artificial., The weakness of the proposed scheme is the low amplitude of
the reference sinusoid, particularly when the modulation index’is small,
and the presence in the "reference" channel of large non-sinusoidal
fluctuations, all of which are "noise" to the proposed instrumentation.
Detailed analysis shows that this defect outweighs the advantages of more
complete utilization of assumption B, Under typical operating conditions
the performance index of the proposed instrumentation is substantially
lower than that of a simple power detector operating on the high frequency
band alone [Eq, (Eh?]. One must, of course, keep in mind that the proposed

detector is not optimal. One could, for instance, use it to supplement a

10



simple power detector and thus presumably obtain & performance somewhat
vetter than that of the power (standard) detector. However, the resultc
af the report raise some doubts whether, even with optimal procedures,
detectability under assumptions B is significantly greater than under
assumptions A, For the present this question must still be regarded as
unresolved,

The conclusions from 1) and 2) concerning possible improvements over
the standard detection scheme (Fig. 1 of Progress Report No. 3) may be
summarized as follows:

a) If signal and noise are characterized only by total power and
spectral properties and the spectral properties do not differ
drastically, the performance index of the standard detector is
not greatly inferior to that of the optimum detector. One must
also keep in mind that the instrumentation required to realize
the optimum detector is apt to be complicated, Unless simple
modifications of the standard detector can be found that make it
optimal, the attainable improvement would not appear to justify
the increased complexity of equipment in most practical cases,

b) Knowledge that the random signal is periodically amplitude
modulated is of little value in detection,

¢) It appears that large improvoments in performance relative to thre
standard detector can be made only under one of the following two
conditions:

1) An effective scheme, different from the one discussed in

Progress Report No. 7, can be found for detecting low

T



froquency periodic signal components in the presence of
strong periodic components of self noise. This requiree
continuous monitoring and careful processing of self noise
data,

i1) It is possible to give a more detailed characterization of
the signal than is implied by assumptions A or B, 1In
particular it would be valuable to have a description of
the typical waveshape of the signal, with as few random
parameters as possible, This would open the way to use of
genuine coherent detection schemes,

3) Effect of clipping and other nonlinear operations on target

detectability, Assumptions A, Same noise power at each hydrophone.

The procedure of clipping the basic hydrophone data before further
processing has certain practical advantages, particularly when digital data
handling techniques are used, Theoretical studies were therefore undertaken
to determine the effect of data clipping on target detectability and to see
whether nonlinear operations more general than clipping might lead to more
advantageous results, The problem was approached by two rather different
routes,

a) Progress Report No. li considers the standard (power) detector as
the basic instrumentation but ailows an arbitrary, odd function,
zero memory nonlinear device to be inserted at the output of each
hydrophone, (See Fig., 1 of Progress Report No. L. Note that the
linear processor and the clipper are special examples of such a
device,) The analysis is carried out under the assumption that
signal and noise spectra are identical in shape and that noise

correlation between different hydrophones is negligible, The
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result is stated in terms of the usual output signal to noise ratiol
and also in terms of a second figure of merit, defined as the
difference between on target and off target average output divided
by off target average output. In each case [Eqpa (58) and (hO)]
1t is demonstrated that the best performance is achieved with a
linear processor, However, the dependence of the figure of merit,
particularly the output signal to noise ratio, on the specific
nature of the processer is not at all critical if the processor
does not contain dead band, The signal to noise ratio for the
clipped instrumentation falls below the optimum by a factor of
only 0.89. (Fig. 3).

Progress Report No, L also considers modifications in the
basic detector characteristic, The processors are now taken to
be linear but the conventional square law device 1s replaced by a
general even power device, It is shown that maximum output cignal
t6 noise ratio1 occurs when the detector is a square law device,
but once again the index of performance varies only slowly with
modificationé in the detector characteristic, The second figure
of merit; the normalized difference of on and off target average
output, can exhibit a very different behavior, If the detector
has a dead band, for instance, the performance index grows
monotonically with the size of the dead band and approaches

infinity in the limit [Eq, (112)}0 The reason for this peculiar

1Note a slight difference in definitions between Progress Report No. L
and the reports discussed earlier: In Repor® No. L the average signal
component at the output is defined as the difference between average output
on and off target, In the reports mentioned earlier it is the increase in
average output which occurs when a signal appears that was previously absent,
the array being steered 'Yon target" at all times,

13



phenomenon is, of course, that the off target average output

tends to zero more rapidly than the on target average output,

This observation is not entirely of academic interest, for
substantial reductions in cff target average ocutput can be
acpieved for values of dead band that cause only minor degradation
in output signal to noise ratio (Figures 8 and 9). Thus the "off
target plateau" of the directiviiy pattern can be reduced
materially without significant sacrificz of output sigral to noise
ratio.

b) The second approach to the problem of nonlinear data processing was
an attempt to assess the irherent "cost of clipping" by comparing
the output signal to noise ratio of optimum cetectors cperating
on clipped and unclipped dataol This analysis is contained in
Progress Report No, 6., Results were obtained only under the
following special aésumptions: Signal and noise both have the
properties of Gaussian white noise band-limited to 0 £ f £ W cps,
The hydrophone cutputs are sampled at regular intervals of %ﬁ
seconds and there is no correlation between noise outputs of
different hydrophones, Under these conditions the rms output
signal to noise ratio of the detector operating on clipped samples

2

is ';\/1 -'ié times as large as that cf the detector operating on

unclipped samples, where M is the number of hydrophones in the
array, It is probably realistic to consider this as the actual
cost (in terms of detectability) of clipping sampled data, One

must keep in mind, however, that part of the information loss

e ——— e ——— T

lWhen the detection scheme is optimal it is only necessary to consider
information destroying nonlinear operation (such as clipping) on the basic
data, A one to one nenlinearity could always be removed by an inverse
operation in the optimal detector,

1k



might be due to sampling rather than to clipping, For while the
assumed sampling rate is sufficient to avoid information loss from
sampling in the unclipped case, the spectrum of’the clipped signal
is not bandlimited, so that no finite sampling rate can guarantee
complete reconstructability of the contimuous signal from the
samples, It is interesting to observe that evaluation of Eq. (58)
of Progress Report No, L for the white noise spectra postﬁlated
in Progress Report No., 6 leads to a value very close to % for the
degradation in output signal to noise ratio., This at least
suggests - although it certainly does not prove - that the figure
%'is indeced a good estimate of the "cost of clipping" for
reasonably large arrays, It further suggests that the optimm
detector for processing clipped data derived from spectra with
the white noise properties assumed in Report No., 6 dves not differ
greatly from the standard (power) detector,

l') Effect of clipping on target detectability, Assumptions 4,
Noise power may vary from hydrophone to hydrophone.

One of the primary reasons for clipping hydrophone data prior to
further processing is the possibility that the noise power may vary sharply
from hydrophone to hydrophone. Due to malfunction or special operating
conditions one hydrophone, or a group of hydrophones, may contribute far
more noise than the rest, When this is a serious possibility, it appears
reasonable to clip all hydrophone outputs, incur the small loss of
information discussed in 3), but prevent a large contribution to the
output noise from a few faulty hydrophones., This type of consideration
is in fact one of the primary reasons for the use of clipping in

practical instrumentations,

15



The theoretical background of this problem is explored in Progress
Report No. 2, The basic instrumentation investigated was that of the

standard detector with and without clippers, [Fig,. 1] The analysis

assumed signal and noise spectra of identical shape and the absence of
noise correlation between different hydrophone ocutputs,

Output signal to noise ratios for the clipped and unclipped
instrumentations were compared under several sets of assumptions
concerning noise power at different hydrophones,

a) The probability density of noise power N, for the i'D

i

hydrophone is uniform on a logarithmic scale over N, <N

p SNy =N

H
and vanishes elsewhere, [qu (lh)J

b) The probatility density of N; is uniform on a linear scale over

NL 5Ni SNy and vanishes elsewhcre, [qu (26)]
¢) The probability density of N; varies as —1-2- over N =N, =Ny
N
5L

and vanishes elsewhere. [ch (29)]

d) The noise power at each hydrophone can assume only the values NL

and NH and does so with probabilities p and (1 - p) respectively.
[Eq. (15)]
In each instance the noise powers at different hydrophcnes were assumed to
be statistically independent,

Comparieons were made primarily on the hasis of a figure of merit
defined as the difference between on target and off target average output
divided by off target average output (as in Report No. L). The output
signal to noise ratio was also considered and found to have identical

properties except for a multiplying constant,

16
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The results show the expected trend in each case., When there is little

or no variation in noise power, the unclipped instrumentation is superior
by a small margin. When large variations in noise power can occur, the
clipped instrumentation becomes superior, The exact.extent of this
superiority depends rather critically on the probability distribution of
the noise, In cases b) and c) the ratio of clipped to unclipped
performance indices is close to unity for physically reasonable vaiues of
NL and NHQ In case a) and particularly in case d) (when approximately
half of the hydrcphones are in the high noise state ) very substantial
improvements in performance are made possible by clipping,

The results of sections 3) and L) may be sunmarized as follows:

a) The clipping of hydrophone data never causes a large decrease
in signal detectability. It may result in substantial improvement
i large‘variations in noise power from hydrophone to hydrophone
are likely,

b) Signal detectability is not at all critically dependent on the
specific prrperties of nonlinear processors operating on the
basic hydrophone data unless the processors have a significant
amount of dead band, Neither i1s th: precise nature of the
nonlinearity used in detection critically important. Since
some properties of the bearing response péttern are more
critically dependent on these parameters, it appears possible
to improve the bearing response pattern without seriously
affecting detectability,

17



Progress Report No, 1 has not been mentioned in this discussion,
It deals with the correlation between nolse output at different hydrophones
and provides computational results in this area that serve as background
for several of the other reports, In particular it shows under what
conditions one can make the very convenient assumption that the noise

correlation between different hydrophone cutputs is negligible,

18
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SPACE-TIME CORREIATION IN ISOTROPIC NOISE FILLDS

I, Introduction

Several investigations have'been made in order to detexmine the
cross-correlation between signals produced by two omnidirectional -
transducers located in a field of many scattered noise sources.l’2’3
Knowledge of the noise cross~correlation is often necessary in
determining the performance capabilities of arrays of such transducers
which are used to determine the direction of a signal source located
in the field of the scattered noise sources,

In this report, an attempt is made to expand and simplify the
interpretation of the results given in the references listed. Three-
dimensional and two-dimensional isotropic noise fields will be
considered. The field is considered isotropic in that the power received
'rorn any airection is constant,

An “infinite number of noise sources distributed uniformly on the
surface of a sphere of infinite rédius from the local transducers is
used to siimlate the three~dimensional isotropic field, |

For the two-dimensional field, an infinite number of neise sources
are distributed uniformly along a circle of infinite radius in the plane
of signal propagation.

In addition, the noise produced by each source ls assumed to be

stationary and statistically independent of that produced by every

other source, and each noise source is described by the same autocorrelation

function,
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II. Cross—Correlation with Time Delay

Figure 1 describes the geometry for the spherical noise field,
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It has been shown™ that the normalized cross-correlation function for the

by Equation (1).

delayed output of trarsducer 1 with the output of transducer 2 is giver;
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In Lquation (1), d

distance between
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p('r:+-6cosc))h—1-ls:m9d@

(1)

— is the time required for the signal to travel the

1
the two transducers, and p (7) is the nomalized
autocorrelation function for each noise source,

A chauge of variables

results in Equation (3)
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1 1 I
p(v,, ) = pe p () ar (3)
38
Tt 4
38
1
Equation (3) simply represents the average value of p (z') over an
1
interval 2’:8 in length, centered at T = 7, Figure 2 depicts this

interpretation graphically. , i ('r' )
!.

Fig. 2

e S Graphical Interpretation
of p(7_, 3

For the circular noise field, the cross-correlation function has

been shown to bel

n
p('rs, T) =f p,(*c + T cos Q) %1 de (L)
0

With the variable transformation in Equation (2), Equation (L) becomes

Q54 6B
. i fs 2 o'(z)) ; o
P(Ts, T) = }._L.'s‘ E !T, ik 1/2 dv (,
e [

1
Equation (5) represents a weighted average of p (T) over an interval
1
2'rs centered at © = 7, The weighting function is shown in Figure 3.
1
It can be seen that the values of px('r ) at the ends of the interval

are weighted very heavily,
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Note also that the average value of the weighting function expressed in

Equation (6) is unity.

T +T
1 e 2 Tl T 2 —1/2 t
?‘f’j £ 1‘(7 v’ = 1 (6)
S S
=T +T
S

A comparison of the results in Equations (3) and (5) reveals that the
evaluation of the cross-correlation function for the three-dimensional
noise field is considerably simpler than that for the two-dimensional
case For each pair of transducers in an electronically steered array,
the observaticn is also made that the maximum relative electrical delay
necessary to steer the directional response of the array is never greater
than the wave propagation time between the pair of transducers in question.
In terms of the symbols used previously, the following is always true

for the determination of bearing response patterns.

T B (7)
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An examination of Figures 2 and 3 indicates that the cross-correlation
functionhfor a two-dimensional field is less than that for a three-
dimensional field for values of T near zero., Identical well-damped auto-
correlation functions are assumed in both cases. In the two-dimensional
case, the small values of p'(Tl) near T' — TS are weighted more
heavily than the same values in the thiree~dimensional case. However,
for values of T near TS, p(TS, T) for the two-dimensional field should be
greater than that for the three-dimensional field since the large value
of px(T,) near ' = O receives infinite weighting in the former case.

1, 1
Evaluation of p(TS, 7) for two simple forms of p (T ) follows,

III. Evaluation of Cross-Correlation Function - Case A
The function p(rs, T) is first evaluated for the simple exponential

autocorrelation function given in Equation (8)

't ~, | 7T |
p(t)= ¢ o (8)
The corresponding spectral density is
S(w) = -2 s (9)
w_ 1 +(——q
o @,

The integral for p(Ts, T) must be performed in two parts because of
! By 1
the temm |T ‘ appearing in the expression for p (T ). For the three-

dimensional noise field:

0 . TS+T {
i “ot S o
p(TS, T) —_ € dr! + £ dt
2t
St 4 0 J
IS
~©oTs
l-¢ cosh on
= OGS TS
W T
0 S (10)
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If = TS, the maximum clectrical delay necessary, Equation (10)

reduces to

-2(001'3
o(t_, ©_) = Lol (11)
2w T
0 S

Furtheriore, if aE == 1l and T = 0,

pilerg, @) € (12)
wT
o's
Equation (12) also places an upper bound on p('rs, T) for any T and 'ts.

If the separation is defined in terms of wavelengths of the half-
pover frequency of the individual noise spectra, the relation with the
parameter ons is

_§_=d£9=g'io£=wors (&)
\ c c 2n 2n
o)
The upper bound for p('rs,'r) is
Il

plr,, 7)<

on (transducer separation in wavelengths)
of upper half power frequency

(1L)

For the two-cdimensional noise field, Equation (L) may be used with
several asproximations to evaluate p(TS, T), Equation (15) is obtained

after appropriate substitutions are made.

n

-w |+t _cos @)

plry, ©) = % [e ° s e
0
S Y [ el ) |
-w (T4t cos @ ®w (T+T _cos @
- %{ s O 8 s ¢ € dGl (15)
0 e J
0
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where . 6, = cos"l(- —) (16)

it Wt is large, the integrand has negligible value except in the
vicinity of @ = Oo. The exponent of the integrand may be approximated

by the first three termz in the Taylor series expansion around 6 = Qo:

(@ = Ba)F

20 - - -
mo(«: * T  cos g) o0 © Tg 8in 90(9 Oo) w 5

T (© 4]
o¥s 05 9,

)2

- (¢ - @
= R = S
¥0-w\ft -1 (0-0)+ar ; (an)
If a = wo'\{'r:sz -7% and b= @ T, then Equation (15) becomes

e n
o b 2 b 2
. lj 53(°'go> - 5(e-6,) . *f c-a(e-oo) + 2(0-0)

p(’rs, T) & - de

(18)

0 e
o

Befers Lquation (18) is evaluated for the general case, 0 < T < Ty

several special cases will be evaluated, For~+t =0, b=0, a = @ end

© =2, Then Equation (18) becomes

o 2
Z n
2 ot (e~ =)
ol o)ef% |~ o 2" 90 = A1 (19)
, W T
“0 O 8
For <= Tl & = 0, b= WoTgs and 90 = n, The second integral in
Equation (18) disappears, and the result is
T
1 2
f -zw~t (0 =-n)
plty, ) % -lﬂ g 2 08 0N e (20)
i Venwa
0 o's
Al-7



The results in Equations (19) and (20) are valid only if T, >> 1
For values of T near zero, such that the quadratic portion of the

exponent may be neglected, the result in Lquation (21) applies.

e
1 e wVTZ-TE (6-0 ) 3 Nt 242 (-6 )
P('vs,'r)"-;ll g ° 40 + g & | T ° 40
) )
¥ 2/n

wo\/’ts -,

Finally, the integrals in Equation (18) are evalunted by completing

. 1 i
the squares in the exponents, and by letting 6 = 6 - Oo, and 6 = Qo - 8,

? e I 2 2 n-e Ll 2
oo - a/Ab) o (166 ~a/¥Db)
- QZEIO - ¢ dQ’+a~gB[ C

pltg, T) ;/-ﬁ £ £ de

0 0
(22)

>

Adcitional variable substitutions found in Equations (23) and (24) and the
definition of tabulated i‘unc‘oions’""S in Equations (25) and (26) allow the
final result to be written in Equation (27).

o' + 2
x=-—————@— (23)

(2h)

a
2 2
erf (a) = — f et at (25)
‘Wt
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& '
F(8) =| € dt (26)
JO
Then o
[ a_
(x_, ) = L 2T B o | raa - 1.y
plr,, © nlz \{;l}arfwg o, e erf %-]
4 b-\(% lLF(\ﬁ——b" —F(_\]-%-{;-\[g(n-go)) (27)

The result in Equation (10) for the three-dimensional noise field is
plotted in Figure L for two values of w T, as a function of 'r/'rs and
compared to similar results in Equations (19), (20), (21), and (27) for
the two~dimensional field. Previous quantitative conclusions concerning
the relative size of p('rs, T) for the two types of noise fields are seen

to be substantiated in Figure l.

IV. Evaluation of Cross-Ccrrelation Function - Case B
The normalized autccorrelation function found in Equation (28) is
considered next.
o'(x') = l{ = ",7""23";) 5(-5 Ae® - l)woi’tll+
2| | i
S ——
& ) e(-?-\/ﬁ“z - l)wol't‘,l

! (28)
\ V¥Z o1

”~

If © < 1, Equation (28) nay be put into the form

-f‘m !l U
p'(z") A L— ol cos Gh =57 |'] + cos V1 -4%)  (29)

The corresponding spectral density for p!('r’) is the simple narrow band

spectrum which follows.
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0

£,
®

o
In Equation (30), @  is the center frequency, and 2%w_ is the bandwidth
between half power points,

In order to find p('rs, T) for the three-~dimensional field, Equation (28)

is substituted into Equation (3). One step in the integration process

yields
0
: : | (‘f—-h -1) coo'r' ((3+'\/",’5 -1) wo'r'
g, T) = - g + €
i VG2 o
, -T +T
8
r == ——é-‘—l TS”
Lo(-7 +'\/z:2-1) et (=5V9%a) 7'
+| e ° . g (31)
e i
0

Evaluation & the limits indicated in Equation (31) end simplification of

terms results in Equaticn (32).

-%w'r

| os [ _ ‘—
, T) = 4 {sin W ¢ %Ylwows) cos (V1 =G (OOT) cosh (%"00’5)

p(T

— e 21

s
Vi -§ W7

- cos (V1 - G wo'rs) sin (V1 - 552 coo'r) sinh (%wo'r)_l (32)

Combination of the terms inside the brackets of Equation (32) yields

Equation (33):
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2 g # 2 2 2 /2
‘\/]T-'—Tm'r (cosh {07 = sin \/l - o)o'r)
i
x ain["v‘l - -2‘ W Ty = tan™ (ten V1 - g\i @ % tanh %mo'r)i\
|

T) =

plTg,

(33)

Special cases for v = 0, and T = T_ are found in Equations (3L) end

(35) respectively.

iy
p('rs, 0) = ¢ L % 28 (34)
Vi Pap
o's
-2 T sin 2V1 - $° o 7
1708 0°s v
p(’ts, 'rs) € I o (35)
.. 0O 8

Interesting behavior of p(’ts, T) is also epparent, if § is small,

for values of T in Equation (36)

T = T + m n= 0,1,2’3,.--0 (36)
(o)
o =\ -‘3’2 !

With the substitution of the relation in Equation (36), Equation (33)

becomes
-%w"t - nn_(.‘f
%t 2 BRI 2a > > 2
(T + mo , ) = (cosh““w t - gin“aw t)
aw nn o0 o)
° o il

x sin [on + %’1 ~ tan"1(tan aw T tanh frwo'r)] (37)

Examination of the arctan function in Equation (37) reveals that

o nn
i =
= T when aw T = =5

tan-l(tan.amor tanh%’wor) (38)
= s T when %’wo'r B Cl

Aal=12
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Thus

e _an¢
( e nn ) € 9 e 'ZEL 2 )1/21 nn
P(T + ey T o (cosh“§w T = sin” aw 7 sin -
=z
(39)

Sufficient computation with Equation (32) or (33) would result in a
contour map of pOTS, T), similar to that in Reference 2, However,
Equation (39) gives sonie important details about such a map, without
resorting to detailed computation procedures, The loci described by

Equation (36) are plotted in Figure 5. The axes are appropriately

normalized,
| &
o) ;v
WoTs | 0 / < : %4 S
| F // bt P Q
! ; # - / /
; :
!/ / / 7/ 4
2n : / V4
- / /
# I g“f
| % 4
r / ‘
2'z*r‘”/ 4 /"?/ N
x
/ g 2
; Q
// 4 0
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2
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0 n
- n w 2n aw T
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The lines in Figure 5 for which n is even give epproximate loci for
which p('rs, t) is zero. The lines for which n = 1, 5, 9, etc. are the
epproximate loci for the ridges of the contour plot in regions where
p('rs, T) is positive, Similarly, the lines for which n = 3, 7, 11, etc.,
describe the approximate loci for the ridges for negative values of
p('rs, ©). The relations are exact where © T = %.

Finally, from Equation (33) it can be seen that the upper bov 4 on

the magnitude of p(’rs, t) for all values of £ and T is

=0T,
IP(TS, o1 cosh Yo T < ]2'| T < T,
Vi-%“on v Yi-¢“wn
0's ¢+ “o's
(ko)

For the two-dimensicnal noise field, substitu%ion of Equation (28)
into Equation (L) yields an integral which does not yield to the
approximation techniques tried in Section III. Due to the oscillating
nature of p’(’r'), the integrand can have appreciable value over the entire
interval of integration for =mall : The Taylor series gpproximation in
Equation (17) for the exponent is not useful since this approximation
becomes inaccurate for values of 16 - Ool > 1. Such angular differences
are well within the interval of integration, since e Ooi can be as
large as n.

Humerical integration seems to offer the most fruitful approach to
the solution of p('rs, 1) for narrow-bvand two-dimensional noise fields.

This will not be attempted here.

V. Evaluation of Cross-Correlation Function - Case C
In order to gain insight into the question whether the results

obtained thus far depend critically on the somewhat arbitrarily postulated

Al-14
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Toiu of p{t), a second narrowband model will be considered. For
convenience in mathematical manipulation the normalized spectral density

of each elementary noise source is represented by the equation

(00 )2 (k)27
s) = —L8_ 1o T2 e | > 50 (1)

w \Ven o

Equation (L1) is not Wiener-Hopf factorable and therefore represents
only a limiting form of a realistic spectral function. For the purposes
of the present discussion this causes ne difficulty.

The autocorrelation function corresponding to Equation (Ll) is
- 7202
2 o
p(t) = ¢ [cos ® T - T0 = sin ooo'r] (L2)

)
With wo > > o the second term is small compared to the first for the
significant range of .

The desired cross-correlation for the three-dimensional field is most

easily evaluated by use of the expression

(=]

plrg, T) = %f S(w) %—m-s " dw (13)*
s
[ b

Substitution of Equation (L1) into Equation (!3) leads to the result

.

2 o° 2
=eige (’rs-«r) =il ('rs+"c)
(3 sinw (t_-17T) +te sin @ (T _+T)

o ''s o''s
(L)
This relation is equivalent to Equation (32) in case B. The special cases

&

20 T
0's

plrg, 7) =

1:=Oand't='csyield

Al-=15
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2 @, - o's sin @ T_
p(Tg, 0) = ¢ (LS)
wT
o's
2
o
-2('40_0' 25 s) gin 2 © Ty
p(’rs, 'rs) = ¢ ——— (L6)

2 w7
oS

If one identifies g—- with ° and considers (3’ <<1 Equations (45) and
0
(L46) are closely analogous to Equations (3L4) and (35) respectively.
An upper bound equivalent to Equation (LO) can be obtained by

replacing the sinusoidal functions by unity. Thus

[ 1 o2 2 2 1 @ 2 2|
o}
- % 5;2 %o (Ts-'t> = Z):f %o (Tsﬂ-)
|p(1: R 'r)l < 1 € + € <1
P 2w T w T
o's o's
= ) (47)
On the other hand Equation (L40O) can be rewritten in the form
2 @.T T ‘|
g ©O°F . 1 -yo (T~) =3 (T 4T)
A =5 cosh\wof = v =5 € + &
Vi = 0 2Vl - % o7
' (L8)

T <7
8

Again identifying € with 'uTo' and letting (f << 1, one observes that Equation
)

(L8) is the direct analogue of Equation (L7).

Finally it is clear that, except in a neighborhood of the origin
sufficiently small so that ot + ) s 0(1), the function p(t , T) of
Equation (LL) is characterized by ridges and valleys parallel to the line

T (for *, T, > 0), much as those shown in Figure 5. It therefore

Al-16
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appears that the general properties of p(Ts, t) are relatively independent
of the preclise nature of the autocorrelation function assumed for the

elementary noise sources.

VI. Conclusions

The results found in Equations (12) and (LO) are valuable in that
they allow a quick estimate of the maximum value of p(TS,T) for a
given separation of transducers. The results for the wide-band case(A)
and the narrow-band case (B) are approximately the same when w_ is
interpreted to be the upper half power frequency in the first case, and
the center frequency in the latter case. These answers in an approximate
sense can be exttended to other spectra, wide or narrow, if @, is
interpreted to be the upper half power frequency for the spectral
density of each tiny noise generator in the field.

Also a general pattern of regularity has been established for
p(Ts, T) for the narrow-band, three-dimensional noise field. Coupled
with Equation (L40O), Figure 5 can provide a more accurate estimate of
p(TS, t), Figure 5 is also of value in determining transducer spacings
that yield little or no cross-correlation,

A comparison of results for p(Ts, T) for the three-dimensional noise
field and for the two-dimensional noise field is also interesting. Under
the assumption that the spectra of the individual noise generators are
given by Equation (9) in both cases, p(TS, T) decreases for increasing T
and constant s for the three-dimensional case, and increases for the

same conditione in the two-dimensional case if e is large enough,
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SIGNAL DETECTION BY ARRAYS IN NOISE FIELDS

WITH LOCAL VARIATIONS

I. Introduction

A considerable amount of work has been done in recent yearsl’z’B’h’S
in analyzing systems composed of local arrays of transducers used to detect
the presence of a plane wave signal in an isotropic noise background.
Such systems have had direct application in undersea signal detection,
and of particular interest in this field is the DIMUS system, The DIMUS
system has been defined2 to consist of the following steps in signal
processing:

1. Sampling the output of each transducer at small, equal time

intervals;
2. Providing infinite clipping for each sampled output;

3. Delaying the clipped signals electrically by integral multiples

of the zampling interval;
L. Adding the delayed signals;
5. Squaring the sum;
6. Filtering the squared sum.

5

Analyses carried out by Faran and Hills,” and R.udnick2 have assumed
trat the background noise power output of each transducer is the sanme,
Furthermore, the average noise power output on a short-time basis was
assumed to be constant for each transducer,

I

Although the system analyzed by Thomas and Williams™ was not a DIMUS
system, infinite clipping of signal plus noise was incorporated in the

analvsis. Thomas and Williams compared the performance of a system with

A2-1



infinite clippers to a similar one without infinite clippers for the
situation in which the short-term average noise power output of each
transducer varies with time, However, this analysis is limited by the
assumption that the short -term noise power outputs of every transducer
are described by the same time function,

Experimental observations have shown that the average nolse power
outputs of transducers mounted in an underwater array are not the same
from transducer to transducer. One possible explanation lies in the
fact that different turbulent flow patterns are set up around each
transducer when the array is in motion. Also, the self-noise due to
the internal construction and possible malfunctions is different for each
transducer,

The purpose of this report is to incorporate the variation in noise
power output from transducer to transducer in the analysis of the
performance of the array. A system which is essentially DIMUS in nature
is analyzed and the performance is compared to a system which is identical
in every respect except that the infinite clippers are absent. For each
of the two systems, two quantities form the bases of comparison:

1. The maximum average signal output of the system, which occurs

when the array "beam" is steared directly at the signal source.

2. The ratio of the square of the maximum average signal output

to the variance of the output of the low-pass filter.
For purposes of comparison, two performance indices are calculated by
forming the ratios of the quantities defined above for the system with
clippers present and for the system with clippers absent. The assumptions

involved in the analysis are listed in the following section,

A2-2
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II. Assumptions and Definitioms

The system to be analyzed is shown in Figure 1.

Transducers Infinite clippers Summer Square Low Pass
t)m, ()] - t Law Filter
1 (::;lg_lj&Lg'z t:r" ] VT( ! Device
- _;(. vy(t) H(jo)l
sy(¥m,(¢) = — x(t) 5‘/ 3’(_“f l-\—\ z(t)
|
sty (8)

u (-——— I i

Fig, 1 Essential Configuration of a DIIUS Tystem

1. The transducers in the array depicted in Fighre 1 have ommi-
directional characteristics,

2. The normalized autocerrelation functions of both the signal and
the noise'inputs to the clippers in Figure 1 are identical.

3. The crosscorrelation between noise inputs for dif ferent channels
is zero, In an actual system, the crosscorrelation may be made
arbitrarily small. This assumption mekes the following analysis
mathematically tractable.

L. The signal and the noise inputs to the clippers are gaussian and
stationary. Signal and noise are independent.

5. The signal power input to each clipper is the same, but the noise
power inpﬁt is @ilow.d to vary from channel to channel,

6., It is assumed that the short-temm averages for the input signal
powers and input goise powers do not vary significantly for any

particular channel,
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7. The effect of sampling is neglected, Effectively, the sampling
takes nlace at a high enough rate that the higher harmonic
power ‘spectra produced by sampling do not overlap the fundamental
poﬁer snectral density.

8. The digital time delays have been omitted, since the analysis
is primarily concemed with "on target" and "off target" guantities,
It is assumed that such combinations of delays are available to
electrically steer the array directly at *he target, and to steer
the array far enough away so that gain effects dve to the urray

configuration are negligible.

IIT, General Form of System Directivity Patterns

The correlation matrix for the noise components is given by Iq. (1).

It is assumed that ni(t) = si(t) = 0.

Nl 0 g = 0
0 N2 o, = @
H n, (T n (T + 'r)“ = |, H p(t) = p(T)
Y 1] o 0 N, — 0
3

0 0 o NM (1)

The correlation matrix for the signal components of the array
inputs is
p(t) p(Typ+ T)ow p (Tt T)

0 = it )
“ s, (t) Sj(t ) P(Ty* 7} plT) oyt 7

| = Sllp(Tij + T)“ =8

e O e

plTnt 7) p(mpt ©) - pl%) 1

(2)
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In Eqs. (1) and (2), the N, are the noise power inputs to each chennel,
and S is the common signal power input to each channel. The function
p(T) is the normalized autocorrelation function for the signal and the

noise. The delay factors 7,, in Eq. (2) represent the combined effects

13
of spatial time delays introduced by the plane wave signal relative to

each pair of transducers, and also the electrical time delays which are
usually introduced in all steered systems, but which are not included

in Figure 1.

The averaze output of the squarer, Sr', yields the so-called directivity
pattern, which may be obtained by varying the electrical time delays and
keeping the physical orientation of the array fixed, or by keeping the
electricel time delays fixed and varying the physical orientaticn of the
array relative to the plane wave signal. For the system in Figure 1,
with the clippers removed, the average output has been shown2’3 to be
the sum of all the matrix elements in Egs. (1) and (2) with T = 0,

The subscript A in Eq. (3) and following work is used to denote the
fact that the clivpers are removed.

i M )

yﬁ@) = {Nij +Sp ('rij)}

M M
N, +8 M+ 252 Z o ('rij) (3)
i=1 1=1 =i+l

The angle 6 is defined as the steered beam angle and is a complicated

function of the electrical time delays wihich make up part of the Tij‘

A2=5



Figure 2 shows a typical directivity pattern resulting from Eq. (3). The

signal and noise are assumed to have low-pass spectra.

- |
W,

TAL

aft---4

o 0

Fig. 2 Typical Directivity Pattemn

At some angle, 90, the steered beam is "on target" and a maximum
output, 5;AO’ results. When the beam angle is greatly different from the
target angle, Qo’ the directivity pattem approaches a lower asymptote,
S;AL’ very closely, because the p('rij) approach zero. These quantities

are
M

Fro Z N, + G (L)
i=1 .

¥, = N, + SM (5)

Viith the infinite clippers present in the system, the directivity
pattern has much the same shape as that in Fig. 2, However, in order
to define y(6) mathematically, it is first necessary to define a

normalized correlation function, ‘uij (t), for signal and noise:

ey . (AET TR e R )

6)
1 (s + Ni)l/z(s + )2 :
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Furthemore,

7

S +
(5 + N (s + N3)1/2 B 2

p,ij(’r) =< St

p(T) 1= 3

The correlation functions for the clipper responses, with the assumption

that the clipper output is either +1 or -1, have been shcwn)4 to be

p.;_j('c) = viTt) vj(t +T) = % arcsin{uij(r)‘} (8)

\

|
(’rij)r it

Note that (
S

(s + Ni)l/z(s + Nj)l/2 ©

4 arcsinJ
1 T L
p.ij(O) = (9)

1 L=

The directivity pattemn i1s found by swming Eq. (9) over a1l i and j:

M U1 \I
@ 5 D) L)
v(e 2_, ~ arcsin p.ij(O)J,
i=1l 3= {
M M )
N S
= M+ 2 \—] N — arcsin p(t,,)
= L, 1/2 = A2 )
=1 g (5 + N )78+ Nj) I
(10)
The "on target" and "off target" values, 50 and S;L respectively, are
M M a
iz S 2
y=M+ZZ ) = arcsin =N
9 Lo oo 15+ 0¥ %(s + v 72
i=1l J=i+l 4 -1 3 (11)
§L = ¥ (02
A2 -7



IV, Performance Comparison - Ratio of Average Signal Outputs

The average signal output is defined in Eq. (13) to be the difference
between the "on target" value of the directivity pattem and the "off
target" value for both systems., Note that the signal source is still

present for both conditions,
Aff- = io = iL (13)

For purposes of compar&son, the directivity patterns for toth systems are
normalized with respect to the "off target" response in each case, The
ratio of the normalized Ay in both cases then becomes meaningful as a
performance index,

The indicated computation may be carried out for any particular
system for which the Ni are known by measurement. However, in order to
get some general results, it is convenient to assume a étatistical
distribution for the Ni which applies to all treansducers, Of course,
physical measurements should support any assumed distribution, Two simple
statistical distributions are assumed and analyzed in detail, one of which
is continuous, the other is discrete., The convinuocus distribution of Ni

is described by the probability demsity function, £(IV,).

' -1 g B =

' (Ni in NH/NL) N, S N S Np
£(N,) = 4 (1L)

l 0 elsewhere

The discrete distribution is two-valued and is described in Eq. (15).

%] e
N, = ‘> with probability < (15)
1 L 1(1 : p)[
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Statistical averages of Ay over the Ni are used in computing thke ratio
of the Ay for both systems.

For the system without clippers, from Eqs. (L), (5) and (13)

(a5 = s - w) (26)

Ghy

The normalized signal output found in Eq. (18) is denoted by primes.

<A A> g
= (M~ 1) ———— (18)
(&> = <yAL s + 1

and

]

H(N) +5) b))

For the system with clippers, the normalized signal output fron

Egs. (11), (12) and (13) is found to be

:;>! = <A— = VM - -— < l' S l>\
{3 <—ﬁ§L> (M- 1) arc:51n<L(S T )1/2(8 = N lfgl/
(19)

The signal response ratio, which is an index of relative system
performance with respect to average signal output, is defined to bc the

ratio of Eq. (19) to Eq. (18).
p
—\! (N
\Av> -2 <rcs:m4 2 >(1 + l/)
A (s + 1 Y25 + NV

Equation (20) remains to be evaluated for the two cases indicated in Egs.

(1h) and (15).

(2C)

For the continuous distribution in Egq. (1&), which describes a

uniform distribution of noise power cn a logarithmic basis, we have
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<Ni> -] Ni(Ni n N—H-) aN, = (NH - NL) in N—E) (21)

i

LT

N,
_If the definition &, = <+ 1is made,
-1
(N, )
(l’r ]‘)=l+(aH-aL) &niH- (22)
S B

Furthermore, the evaluation of the eipectation of the arcsin function
in Eq. (20) is simplified if the restriction is made that ay > a2 1l
Since the detection of strong signals presents no problem, the restriction

7

is almost always satisfied, Thus,

w

. S -2, -1/2 . B
<arcs:Ln = Ni)l'[g(s % Nj)l/> <(1 +a) 7 (L aj) > (1 #3)

2
% -1
( /
=j (l+a)l/2\a. znfﬂ) d
1 aL 1
aL N
) o
, [+ aH)l/e- 1] [ aL)1/2+ 1]“ . o e
= — . ) ==
3 (@ - Y% 1] @+ a5 1] aL)
T (23)

Substituting the results in Egs. (22) and (23) into Eq. (20) yields Ry
] -3
a bty
H [ H)
‘ fa ML o &

(2k)

B

oo 72 |
(BT o ][ w7

St A Sy 0 a.l{aL = b, Eq. (24) further simplifies to

A2-10
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R = 8 B 2 R i3]
2 b(¢n 1)

(25)

The results given for K, in Eqgs. (24) and (25) are evaluated for
several values of ay and plottéd as functions of b in Figure 3, The
results show that for sufficiently large b, the performance of the system
with clippers is superior to that of the system with the clippers rcmoved,
although the results are certainly dependent to a great degree on the
assumed distribution of noise power given in Eq. (14). Other assumed
distributions show much less improvenent,

For example, if

il
L gty
£(N,) = (26)
0 elsewhere
the relation for Rl becomes
- 2
8 (1 + aH)]‘/2 - (1 + aL)1/2 ay *+ ap
R_L = -T-[- ilig & (27)
ay - aL | 2
When ar is large compared to unity, Eq. (27) becomes
2
= for b =1
+
& ¥ ’ﬁ' _Vb‘z"_él - (28)
(67" + 1) % for b-»e

Very little advantage of the system with clippers is shown, even for

large h.
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Similarly, if

N, 1
m -N—-z NL < Ni < NH
£(N,) = ¢ : (29)
L 0 elgewhere

the relation giving R1 137

1
ST S | R W TRPWELA
\
13
" S8y, s 5 ®H &5)
- By, SHRL Br

Equation (30) reduces to Eq. (31) with considerable manipulation if a

is large compared to unity.

T
a S ABL Bl e & (31)
TP 8 4 4

& n for large b

Evaluation of Eq. (31) for b = 1000 yields R, = 1.95. The system with
clippers again shovs very little advantage over the system without

clippers.

Next, Eq. (20) is evaluated for the discrete distribution found in

Eq. (15). The average noise power becomes

/ -
WY = p Ny + (1 - Py (32)
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Also,

@+ a2 a Y2 e pPa e ap s - p)@ sV v gV

+(1-p)2L+ et

2
o s aMP e @ - a)Y?]

(1 + aL)(l + a

(33)
)
Combination of Egs. (20), (32) and (33) yields the relation for Rl:

o2+ & )%2 ¢ (1 - )0 + ap¥?] o2+ ) + (1 - )L + 8]

= -?-
e (1 + a )1+ ay)
2
R1 = % |:p(<:1/2 -1) + i] [f(c-l - 1)+ 11 (3L)

1+ ay

where } c = (35)
1+ aL

Note that ¢ ¥ b for .ap>>1.

The maxdmum value of Rl occurs for

1/2 for ¢ = 1
201/2 + 1

2 = 6)
P i (3
3(C 0 1) 2/3 for ¢ — ¢

The maximum value of Rl is plotted as a function of c¢ in Figure L.

Also of interest are the limiting forms of Eq. (34) for which either
the percentage of noisy transducers is small, or the percentage of quiet
transducers is small, For a small percentage of noisy transducers, (1 = p)

is small, and Eq. (3L) becomes
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Rl’:;% 1+ (c~-3+ 20'1/2)(1 - p)‘| (37)

For a small percentage of quiet transducers, p is smell, and Eq. (3L)

becomes

R¥Ele M2 -3+ o (38)

V. Performance Comparison - Ratio of Output Signal-to-Noise Ratios
The output signal-to-noise ratio for both systems is defined in Eq.

(39), where {Ay) is the average signal output, md <0Z2> is the variance

of the output of the low pass filter, shown in Fig. 1, averaged over

the Ni‘ , ,

{157 ) (byy)

rreEny, Mo 2
<Gz > <ozA )

(39)

The performance iﬁdex, R2, considered in the following analysis is the
square root of the ratio of r, for the system with clippers, to r, fon
the system without clippers. It can be seen in LEq. (LO) that R2 is
closely related to Rl’ which is calculated in detail in Section IV.

1/2
= | s
- ( rA)
e 1/2

(i) (<o A2>) ( <°;A2>) )
() 6,20 (o) | 8+ <) o

=}
1

From Eq. (L4O), it can be seen that the major part of the analysis in

determining R2 involves the calculation of the average variance of the
cutput of the low-pass filter for both systems. Both distributions of
input noise power given in Eqs, (14) and (15) must also bte considercd.
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Since all the invut signal and noise time functions are assumed to
be gaussian, the sum, :(t), shown in Figure 1 is also gaussian for the

system without clippers. Under these conditions,6
R, (t) = R_2(0) + 2 R °(r) (1)
yA % X

where RYA(T) is the autocorrelation function for y(t), and RX(T) is the
autocorrelation function for x(t). In Eq. (Ll), RXZ(O) simply represents
the averase output of the squarer, which has been given the symbol §k.
Thus the variational component of y(t) has the autocorrelation function
2 sz(T).

The spectral density of the function y(t) is

co

SyA(m) = % [' 2 sz(f) 7397 4o (L2)

-

=C2

The variance of the output, z(t), of the low-pass filter is found in

Eq. (L43), wherc Hz(jw) is the frequency response function of the filter.

o)

Q
I

2
L - Sy(co) ‘HZ(;,@)} & (L3)
0]
In order to make the value of r, large, the bandwidth of the low-pass
filter must be ruch smaller then the bandwidth of Sy(w), the input

spectral density. Under this assumption, we have

(o]

2 .. 2
90" % 5(0) ‘Hz(;jm)l & (LL)

0
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Furthermore, if Hz(jm) has the form

H (j0) = —2— (L5)
1# g

then Eqs. (L2), (LY) and (L5) combine to yield

(o]

oéAz = 2 m?Jr sz(T) dr (L6)
0

For the "on target" situation, the function Rk(T) is simply the sum

of all the matrix elements inu Egs. (1) and (2), with Tij = 0,

M
RX(T) =( E: Ni + NFS) p(T) (47)
i=1 '
and
M \ M
B 2(x) =(z N, + M28}( Z N+ 1123) 62(%)
i=1 3=1
M M
{5 9w, +2Mzsy 1 ) o
121 j=1 (L8)

Combining Eqs. (L&) and (LB) and averaging over the N, we have

(ozA2>= 20, {M<Ni2> e 0 - ) ) w2 0s () + M“sz}[ o%(%) dv
- - 0 (L9)

The ratio of the square of Eq. (16) to Eq. (L49) gives the signal-

to-noise ratio for the unclipped systen,

A2-18



et TR B P s

2

2. 8
(1 =-1)
U
WD ;s 5 (50)
%_l§+(1-%1)+ oM =S +1~12( S) ZmF[ pz(fr) ot
<) (N,) n.)
al i at J b 0 .
The first denominator factor is nearly a perfect square if M is large
go that
- - 2
rA\ZmF[ p2('c) d’t) ¥ - (51)
S
0 (<N,->)M o

The result in Eq. (51) is plotted in Fig. 5 on logarithmic coordinates.

For values of S/ (N,) significantly less than 1/M, the value of r, varies

normalized r,

1
i _S_
e e I ; N
/! OB i
P 5
Ty A e 1 (1--1 -1
/ L™ ™
f/
/
2 slope»»// log scales
/

Fig. 5 Normelized Output Signal-to-Noise Ratio as a
Function of Input Signal-to-Average Noise Ratio

as the square of S/(Ni), and the first two terms (noise x noise) can

be used to accurately determine <°zA2>'

This result is of quantitative value in the analysis of the system

with clippers in estimating the region of wvalidity of the result for
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<022>. In this cnse only the noise x noise terms are easily evaluated.
The assumption of low input signal-to-noise ratio 1ls not unduly
restrictive, since only low input signal-to-noise ratios cause any
de@ection.proﬁlems.

In the analysis of the system in Fig. 1 with clippers present, it
is assumed that the signal components, si(t), of the inputs to the clippers
are negligible, This assumption makes the mothematical enalysis for
the evaluation of <cz2> tractable.

The output of the square low device is given by

M=
M=

y(t) = v (8) v,(8) (52)

1

i=1 1

.
1]

The autocorrelation i‘unctiop for w(t) s

Jyt 11 M M N
R(D=E| ) ) w8 v(®) ) ) wlh o) v ) (53)
i=1 j=1 k=1 n=1

-

The evaluation of Eq. (53) is helped by breaking down the terms into

different categories as shown in Table 1.

Subscript "ola‘b:.ons No, of terms Evaluation and comments
i=jandk =mnm 1 Bach tem is unity since vi2 =1
i=jedkfmnm 12 - M These terms are all zero because

! each is of the form

2
. e - T
1)43m k=nm 143 M [i km] E[V]O
k#n

. o I\,[)-L 'I’3 '\-2 ry

iA5andkf£n -2 + M Only tems of the type where
L=y = g andj2=m jiEk
are non-zero. 2(1° - MS in
nunter.

Table 1 Classificotion of Terms in Eq. (53)
AR2=20
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In view of the information in Table 1, Dq. (53) reduces to

' M ¢
SORE RN D IR ACREIO] LAORACEE) BN CY
1=l j=i+l

From Eqs. (7) and (8), Eq. (5L) becomes

2

& 2(M2 - M) -fé-[arcsin p('r-} (55)

Rilw) =M
(%)
In Eq, (55), M2 represents the squared average output of the squarer,
and the second term is the one which represents the time-varying
component of y(t). By a development similar to that in Egs. (L1)

through (L6), it may be shown that

co

o? - wFf Ry'(T) dv (56)

0

!
where Ry (t) is the second term in Eq. (55). Then

<2

2 _ 8 R | S 2 E ‘

AL n—z- wp (1° - M)[ [arcsm p(’r)] dr S {Ni) (57)
0

Since the clippers effectively normalize their inputs, GZ2 is not a

function of the Ni and
2 =n?
(& )i (58)

The substitution of Eqs. (L49), (57), and (58) into Eq. (LO) yields

the expression for R2.
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Fa .jfa ) = l/g
“1/2 p°(t) ar
: DN e\ 2
N [y + ar= 1) ¢y L z
4 2 (il - 1) . > )
[arcsiq p('r)] ar
0
= - (59)

It should be remembered that only the first tro temms in Eq. (L9) are
used in Eq. (59) and also the S in Eq. (L4O) is neglected. Furthermore,

if M is reasonably large, the <Hi2> may be neglected in Eq. (59). Then

!

R2’="K§R1 (60)

end K is the square root of the ratio of integrels J.n Eq. (59).
The integral terms in Eq. (59) remain to be evaluated. Three

representative normalized autocorrelation functions are chosen in Egs.

(61), (62) and (63)-

-, |7}
i

p1(7) (61)

-w21T|
€ (1 = aylzh) (62)

po(T)

U 2 STy
alT) = e e © . s 1-9° o lvl + cos \/l—-‘j’ (63)
- T T |
G <2

The function pl('r) represents a process with a low-pass spectral density
having a haif-power frequency at ol; pz('c), a process with center

frequency @, and bandwidth 2 w,; p3('r), a process with center frequency
©;, and bondwidth 2 w,. o

Table 2 gives the exact value of the integralj pz('r) dt for. the

three autocorrelation functions. ¢
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Py (%) 0,(7) p3(7)

———5 e — ——

2@1 hw2 Lg m3

<

Table 2 Values for‘[ pz(T) dv
0

It should be noticed that the integral yields the following general

result in each case:

co

p2(v) ar = = (6L)
2 (process bendwidth)

The evaluction of the integral involving the arcsin function is most

easily accomplished by means of a scries approximation,

arcsin p(t) = p + % oo + ﬁ% p5 + T%? ol + .., (65)
Squaring,
Eig l 6 8
[arcsin pCrﬂ =p" 4+ .333p" +.,178 p + .11Lh p + ... (66)

[ofo]

2
Evaluation of the integral J’ [sin-1 p(T)] dt using the first four
0

- 2
terms of the series approximnation of l§in-1 p(Ti] yields the values

listed in Table 3. The integration for pB(T) is accomplished by
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(Y==1)
P, (7) P, (T) pB(T)
ST - 50
o 2w, 2%003

<o

2
Table 3 Values forj [s:’.n_l p(T)‘l av
0

replacing the even powers of the cosine functiorn in Eq. (63) by the

i

average velue of the function.

<coszn('\/l —(fz oy + cos = V1 —?2 ]> - et (67)

221’1(n1‘ )2

This is an adcditional approximation, tut the result should be accurate
for low (f . It can be seen that the -values for the arcsin integral are
remarkably close, regardless of the nature of the autocorrelation
function,

From Tables 2 and 3, the factor K is evaluated:

1/2 '
k=22 |7 < 90 (68)
62
Combining Eq. (68) with Eq. (60), we have
R, ¥ LUl Ry >>1 (697
(N.1> >>9

An obvious consequence of Eq. (69) is that the results for the normalized
signal response ratio, R'.L’ in Figs. 3 and 4 nay be applied c}irebtly to

the determination of the ratio of signal-to-noise factors, R2.
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VI. Conclusions

The results in Section IV for the average signal response ratio,
Rl’ have shown that the system with clippers is superior to the system
without clippers if the variation iﬁ transducer noisincss is fairly
large, However, in the case of the continuous distribution for the
noise powers, thc value of Rl is dependent to a greot degree on thec
form of the probability density function that the Ni exhibit. Very
little adventage is shown for most monotonic density functions, except
the one which varies inversely with the noisc power. This particular
density function describes the situation in which the number of transducers
having noise powers above the geometric mean of the extreme values is
equal to the number having noise powers bclow the zeometric mean.

Qualitatively, this result agrecs with the result obtained for the
two-valued discrete distribution of noisc powcrs. Maximum benefit
offered by the system with clinpers is obtained when opproximately half
the transducers produce the lower noise power, and half produce the
upper noise power,

The significant result of Section V is the effective equivalence of
the two performance indices, From Egs. (60) and (69), R, is just a
nultiple of Rl' The numerical factors entering into the multiplier are
consequences of the tipes of clements uscd in processing the signals,
The factor n/2 in Eq. (60) clearly orises from the presencc of thc
infinite clippers, and the factor K arises froi: both the clipping and

squaring opcrations,
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Finally, the resuit for R2 is seen aot to depend greatlv or the
autocorreclation function for the signal ond noise. Jor the three
different functions chosen, the results are cssentially the same. The
exact properties of the low-pass filter are not important, cither,

since the filtcring effect is exactly the same for both systems,
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The

standard

SUMIARY

performance of an optimal detector is compared with that of a

detector; each uses the same array of hydrophmes in an effort

to detect the presence of a directional Gaussian signal in an iso‘tropic

Gaussian
of merit.

1)

2)

3)

L)

noise field. Cutput signal to noise ratio is used as a figure
The following results are obtained:

If signal and noise both have flat power spectra of sufficient

bandwidth so that the waveshapes received by different

hydrophones are uncorrelated, then the optimum detector and

standard detector are identical in per formance,

If the noise spectrum is flat as in 1) tut the signal spectrum

is not, the optimal detector is better than the standard

detector by an amount depending cn the differences of the

spectral properties of signal and noise,

If the signal and noise spectra are identical in shape the

optimum detector is theoretically capable of detecting a signal

with any desired degree of certainty in an arbitrarily small

length of time. In practice the noise alwgys ccﬁntains more high

frequency components than the signal, This phenomenon limits

the improvement attainable through cptimum detection to a

moderate amount in most practical cases.

Knowledge of small differences in the shapes of signal and

noise spectra is of limited wvalue in detection,

Correlation between noise disturbances received bty different

hydrophones appears to degrade the performance of the standard
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detector. One case of this type has been worked cut in detail.
It assumes a linear array of five hydrophecnes spaced at two-foot
intervals and signal and noise spectra falliag off with the
second power of frequency above 1500 cps.

6) An attempt is made to estimate the probable high frequency
behavior of the signal spectrum in order to set realistic bounds
on detectability by means of the cptimum system. Using a model
for signal transmission due toc Eckart, a range~-dependent
expression is obtained for the ratio of per formance figures of
optimal and standard detectors. At ranges of practical interest
the ratio assumes values not larger than O&.

In general, if signal and noise are characterized only by total power

and spectral properties, one is led to the conclusion that the optimal
detector exhibits only a limited advantege over the standard detector

unless the spectral properties of signal and noise differ drastically.
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I, Introduction

This report deals with the problem of optimal detection of a weak
directional signal in a very rmch stronger isotropic noise field by means
of a given array of hydrophones, Both signal and noise are assumed to be
Geussian random processes with known power spectra. The investigation
has two primary purposes:

1) To set bounds on the detectability of signals characterized only
by their total power and spectral properties in a noise background
similarly described. If a signal is not detectable with the instrumentation
considered here, then it is not detectable at all with the given array
unless additional properties of signal or noise are known.

2) To determine how far conventional data processing procedures fall
below the optimum. As in many optimization problems, the best instrumentation
may well be too complex for practical realization and serves primarily as a
standard of cowmparison for more realistic procedures.

It is well known that the optimization problem described above is
formally solved by a likelihood ratio detector., The physical realization
of such a detector has been discussed by F. Bryn.1 Bryn goes on tc
compare the performance of the optimal detector with that of standard
detectors, primarily on the basis of a figure of merit which he designates
as the “array gain," G = G(wh). It may be defined as follows

\
Contribution to average detector output

. Input signal to
G(mn) -|-of signal at frequency &y — |noise ratio at each

Contribution to average detector output | ° hydrophone at
of noise at frequency o, frequency @,

lFinn Bryn, Optimal Signal Processing of Three Dimensional Arrays
Operating on Gaussian Signals and Noise. J. of the Acoustical Society
of America, Vol, 3L No. 3, HMarch 1962, pp. 289-297.
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The array gain is therefore a stcady state (DC) performance criterion
depending ocnly on array geometry. For the purpose of the present discussion
a more useful performance criterion is the signal to noise ratio at the
output of the detector. Its computation will therefore be the first task.

II. Nomenclatuie

The first part of this report will draw heavily on Brynts work and
his nomenclature will therefore be used as far as practicable, Thus the
signal ei(t) received by the ith hydrophone will be represented over the

observation interval O <t <T by the Fourier series

N : .
ei(t) ), LAi(n) cos @ t + Bi(n) sin mnt]
n
where @ = Z%g and the summation extends over all frequencies in the signal

band. Signal and noise are assumed to be independent Gaussian processes
with power spectra S(w) and N(w) respectively. Then if T is large corparcd
to the correlation time of the signal and noise processes cne can make the
following statements:

a) Ai(n) and Bi(n) are Gaussian random variables with zero mean and

o <
i

variance [S(wn) + N(wnﬂ Aw , where Aw
b) Ai(n) is statistically independent of Aj(m) for all j (including
g =) it AR
c) Ai(n) is statistically independent of Bi(n)
However, Ai(n) is not in general independent of Aj(n). For ease in later

manipulation Bryn introduces the symbolism

A, (n) l<ic<M
x,(n) = (1)

Bi(n) M+l 1 < 2M

A=l
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M is the number of hydrophones in the array. The symbol ¢ >S is used

to indicate the statistical average of the bracketed quantity when only

signal is present. ( >N designates a sim'.lar'avcrage when only noise is

present.

and

<xi(n) xh(n)>s

x.(n) (n)>
i *h N

Still following Bryn we define

< (mn) Aw pih( n)

N(wn) Aw qih(n)

(2)

(3)

Thus pih(n) and qih(n) are the elements of the normalized correlation

matrices of signal and noise respectively:

P{n) =

and

Q(n) =

m—

-

Py1(n)

pM;l(n)

Ppey,a(0) -

Pox,2(2) . .

qll(n)

qM, l(n ) s .

Up,1 ).

sz,l(n) .

pl,M(n)

pM,M(n)

pM+l,M(n)

pZM,M(n)

ay f(n)

3

ay, (n)

qM+1,M(n)

- q2M,M(n)
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-

pM,M+l(n)

pM+l,M+1(n)

Poy, e ()

9 e ()

qM,M+l(n)

qM+l,M+1(n)

U, 01 ()

pl, ZM(n)

pM, 2M( n )

Py, om0

p2M,2M(n)

(L)

ql,ZM(n)

%, o)

Y1, ou)

91, aun)

(5)




Finally it will be convenient to have syubols for the squore matrices

consisting of the first M rows and columns of Eqs. (L) and (5):

_pll(n) N le(n)-
P,(n) = (&)
P fn) . . pMM(n)_
and -
[a,,(n) .. agyu(n) ]
Q(n) = : : . (7)
Qg (e) . L qpln) |

The inverse of Q(n), and hence of Ql(n), will be assumed to exist. Since

Q(n) is a correlation matrix this represents no significant restriction,

III, Optimum Detection

Bryn gives the likelihood ratio LR, the output of the optimum detector,

as
=1 + z {W(wn) - <W(mn)>N} (8)
n
where
wo) = 1 E—M: 2 se)m . il”{ Oylm) Q)
w )&= i x.(n n
n® 2 ) ggi [N(m ) B ]2 L =1 k— lQ(a)l 1Qn) ¢ Tk
(9)
Q, .(n)
—i-‘]—-l-l—- is the ji element of the matrix Q—l
[Q(n)I
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The only term in Eq. (8) dependent on the signal and noise actually received

by the various hydrophones is Z W(oon). Hence the change in DC output due
’ n

to the presence of a signal is simply

A(DG output) = = Z(wmn)‘;s
n
L o [56) 2 2M 2M 2l 2M @) Gun) |
Zc0 S-‘ / / Pi() Jk() (10)
el LI e e R e h(nn o)l

Jsing the fact thot the matrices P end Q are symmetrical this expression

can be written in the matrix fomm

_S(u) ) 2 .
A(DC output) = %— Z B2 e [ P(n) @ Nn) B(n) @ 1(n)
n _N(wn)_
1 - -S(LD ) 2 ’ -2
=i 2l oTr {[P(n) Q 1(n)J (11)
~ IN(w )
n U ' n
where Tr{ .lis the trace of the indicated matrix,
Bryn has shown that
2
2M 2M 2M 2M M M
T\Z)p.() i )2yf—”—n—pln
A A |Q(n)l ol &1 g el
(12)
or in matrix form
LD 2 _ 2
r {[P(n) Q‘l(n)J = 2(Tr 'Lpl(n) Q (n)]‘ (13)
] J
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Hence Eq. (11) becomes

S(w) 2
A(DC output) = T[ 2 T !-Pl(n) Ql_l(n)] (ak)
iy ™ L

Next it is necessary to compute the rms fluctuation of the detector output.
This quantity will be designated by the symbol D{output). If the input
signal to noise ratio is very low, a conditicn already assumed in the
derivation of Eq. (8), essentially all of the output fluctuation can be

attributed to noise and the signal cumponent can be ignored. Then

2 [ 2
D(output) =<[Z W(con)} >N - Z{w(wn)>N (15)
- n —

n

From Eq. (9)

/— - )—»2\ 1 3 S(wn) o S(com) Ao )
\[; “n J Z L Nz(co )(Am)2 N2(m ) A
n m n m

M

\/- p;y (n) B, 1, 1(m) Q;5(n) Qgri1(m) Q (n) Q1p(m)
[ i Q@) Jem)l Je@)  fa(m)
i’j,h,k,
i,jshyk'= 1

(y(n) x(h) x(n) xkt(m)>N

(16)

Now since [xj(n), x.k(n), xj(m), xk(m)] is Gaussian in four dimensions
<xj(n) x,(n) xjn(m) xk(m)>N =

<xj(n) xk(n)>Nécj(m) xk(m)%I + <xj(n) xj(m)%I -<xk(n) xkl(m)>N + <xj(n)' xk(m))bl<xk(n) x;j(m)/;
A J/ N RN

\V4 % \/
term (1) term (2) term (3)

()t

=3 Laning and R, H, Battin, Random Processes in Automatic Centrol,
pp. 82-8l. McGraw-Hill Book Co, ,A]395'§.
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The svbstitution of Eq. (17) into Eq. (16) leads to three teims that will

be treated separately.
<xj(n) xk(n)%I <Xj1(m) x)é(m)>N = qjk(n) qjk(m) N(con) Aw N(mm) Aw (18)

Hence term (1) is

= S(w ) & S(w_ ) tw
1 n m
EZZ i
n n

N(mn) AW N(wm) A

2M
\ (n) Qs Am) Quy (n) Quya(m)
i ) i a5 (n) qg(m)
_/___ Fantt BT !Q(n)l |Q(m)| ()l {Q(m)l Tt A
i,],h,k,
1;J;h;k'— 1E
s 2
2M
— S(w ) Mo Q.,(n) Q. (n)
RN T pyp(n) T g (n)
S )w)? ) @)l fe() I l
i,j,k,h = 1
= 2
- [)_J UC %\j (19)

The last step of this computation follows from inspection cf Eq. (9).

Returning to Eq. (17) end using conditions b) and c) on page 2

a54(n) ayyln) N2(wn>(m)2 =5
(n) = x(m)> xk(n) xk:(m) s 1
0
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Thus term (2) assumes the form

2K

sw)]? | 14®) Quyln) Q (n) Q (n)
D s eyt SRR s e
L Z;‘[N(wn)} men P IQ(n)I Rl @)l logay 3 e
i,J,h,k,
i3sh5k'=1

1

S(w )]
% Z “n Tr |:P(n) Q™1(n) Q(n) @71 (n) P(n) Q" ln) Q) in(n)]
- N(oo

L(%J -{[P(n) Q"l(n):lz}

418
Tr \:Pl(n) Ql-l(n) jL (e1)

=i
s )

n
-
= M

Se——
7]
=S
e
~—

The last step results from Eq. (13).

Finally, returning once more to Eq. (17)
20 2 .
(qj i(n) qij(n) N (wn)(Aw) m=n

<xj(n) xk{\m)}N <xk(n) chi(m)%I =
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Thus term (3) reduces to

2M
L et ST 900 Q) Q) Quytn)
k L,L(m J L—.pih( ) Pyt o)l )l le)l lo)l qjk(n) qkj&n)
i,j,k,h,
1153n' 1
L o [5ey))° -1 -1 -1 -1y
SN [P @) o) @) P) @7 Mm) ) 07Hew)|
n n -
. 2
ol Y -1
. Ele(“) Tr [Pl(m o, n) (23)
n n

Substituting Egs. (19), (21) and (23) into Eq. (15) we obtain

—|5(w) 2

D2(output) = Tr [Pl(n) Ql-l(n)] (24)

7 ee,)

Equations (14) and (2h4) together determine the rms signal to noise ratio at

the output of the detector

A(DC output) _ (.,JS(oon)
D(output ) %’ IN(wn)

2
Tr !:Pl(n) Ql-l(n)]l (25)1

Equation (25) may be rewritten conveniently in terms of Bryn!s "array gain"

M M
G(m_l) = Z pih(n) ih (26)
Sl %’_l lQ(n)|

1This expression is similar to, but not identiccl with, an expression
described by Brym as the output signal to noise ratio (SO). Since Bryn
gives no derivation or physical definition for S, it is not clear whether
he is in fact referring to a closely related measure of performance.
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or in matrix form

6a,) = I | 7y(n) 0 ) (27)
Hence Eq. (25) becomes
i 2
A(IC output) EZ S(wn) G(w ) (28)
D(outout) ry N(wn) e

The frequency index n ranges over the entire band to which the hydrophones
are sensitive.

If T is sufficiently large so that the signal and noise spectra are

essentially constant over a frequency interval of 4w = %; rad/sec., Eq.
(28) cen be expressed in integral form
. ? 0)
S(w )
A(DC_output) \/ > l 6o )| s = h¥ -[ [é(w) Gl ) i
D(output) 2n [N(w ) g 2n N(w)
n n =
(29)
@y and W, 2re respectively the lower and upper bounds of the frequency range

being processed by the hydrophones,

Two special cases are of particular interest.

a) If signal and noise spectra are identical in shape, a situation
closely resembling conditions encountered in practice if one ignores

periodic components of signal and noise

)
\ o= 2
A(DC_output) e, T f G(w)] (30)
D( output) 2 N
=
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<o (@]
where J = jﬁS(w) & and N = /’ u(w) &  represent the total signal
0 0
power and noise power respectively. At sufficiently high frequencies the
correlation between noise disturbances received by different hydrophones

tends to zero, that is

[l fori=nh

a;p(n) = 1 (31)

0 forifh

Then Ql(n) reduces to the identity matrix and G(wn)—é Tr[Pl(n)}, Thus
G(w) approaches a positive constant so that Eq. (30) tends to infinity if
one permits ®2 to grow without bound In other words,perfect detection is
theoretically possible in a finite time under the stated conditions., This
is not unreasonable, for the ratio of signal power to noisc power is the
same in any frequency band of a given width. Thus the optimum de£ector
can be thought of as operating simultoneously on on infinite number of
bands, extracting equally significant information concerning the presence
of a signal from each. In practice, of course, the noise has components
that do not fall off with frequency as rapidly as the signal so that the
input signal to noise ratio %%g% tends to zero for sufficiently large w.
Noise electrically generated in the hydrophones or associated circuitry
will certainly have this property even if the acoustical noise does not.
Determination of the frequency at which the effective input signal to
noise ratio begins to decline sharply is therefore an important practical
problem,

b) If the hydrophones are sufficiently far apart so that qih(n) T0
for all i # h throughout the frequency rmge processed by the hydrophones,

the array gain is simply Tr'Pl(ni]. If one further asswies that the array
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is linear and mechanically steercd oir torget or that, for a general array,
appropriate delays are introduced at cach hydrophone to compensate for
relative differences in distancc to the target, then the elements of the

Pl matrix are all uvnity. It follows that the arrcy goin is simply equal
to M, the number of hydrophcnes in the array. In that case the output

signal to noise ratio is

W,
A(DC output) S“\/ji " j‘c's(m)]z . a0
D(output) en 2 N(w)
1

The general expression for output signal to noise ratio [Eq. (29)]

also deserves some further comment. The lincar dependence of dctectability
on YT was, of course, to be expected on general statistical grounds. It
is interesting, however, that knowledge of small differcnces in the shapes
of signal and noise spectra contributes almost nothing to the detection
process. Differences in spectral shape become important only if they

result in a value of %%%% very much larger than FT over some frequency

range, A case of this type would be cnc in which o finite cmount of signal
power is concentrated in a very narrow bond (i.e., the signal contains a
quasi-sinusoidal component). Because the integrand is squared Eq. (29)
then leads to a large value of output signal to noise ratio cven if the
total power of the ouasi~sinusoidal component is quite small. One must
keep in mind, however, that the optimum detector now depends heavily on
knowledge of the precisc frequency ronge in which the quasi-sinusoidal
signal component is located, In most practical situations it would

probably be vnrealistic tc assume such knowledge. An interesting problem

that has not becen solved to date would be the detemnmination of signal
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detcctablllw in the sense of Eq. (29) when the signal contains one or
more quasisinusoidal components whose frequencies are unknown, or at least
not known accurately,

Iv, Standard Detection

The performence of the optimum detector will now be compared with that
of a standard detector using the samc array of hydrophones. The standard
detector simply adds the outputs of the various hydrophones, squares the

sum and averages the resultant signal over 2 time intervel T (see Fig. 1),

=

\4 ¥ j’“‘““{-quarer —1 Filter
“3 ‘i 73
*n - Fig. 1

Procticel instrumentations frequently include - clippers and digital time
delays. These are omitted here for two reasons:

1) It is desired to compare the likelihood ratio detector with the
best version of the standard detector. Under the conditions assumed in
this computation clipping and digitel delay are known to degrade
performance,

2) The degradation in perfomance due to clipping and digital delays
has becn discusscd clscwhcrcl and it is therefore not necessary to
introduce this added computational complexity herc.

It will be assumed that the array has been steered "on target," so

that the signal component s(t) of each hydrophone output is the same. The

lP, Fudnick, Small Signal Detection in the Dimus Array. J. of the
heousticrl Socicty of America, Vol. 32 No. 7, July 1960, pp. B71-877.
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noise output of the ith hyarophone will be designoted as ni(t). It is
nssumed to hove zero mean and to be independent of s(t). Then from Fig. 1

the DC component of ¥y is

M {2- / 7 M M
3. B o 2w fata)1 = Y
EFSJ Bl| ) F(t)+xﬁ(tﬁ M mlf(th f*'§j LJEbﬁ(t)gﬁtH
i=1 /o i=1 §=1
(33)
Thus the increcse in DC output due to the signal is
/ 2\
A(DC output) = M E{[s(t)] } - WS (3L)

.

where § is ogain the average signal power at cach hydrophcnc.

Calculation of the rms output fluctuation is perhaps accomplished most
readily by integrating the continuous portion of the power spectrum W3 (w)
of y3. For direct comparison with the optimal detector the smoothing
filter will be defined simply as a device which averages yz(t) over T

scconds., Its weighting function is therefore

'

- 0StsT
n(t) = (35)
0 clsewhere
By Fourier transforming one obtains the transfer function
I
H(CD) = % O—jwt di = 1l - coswt +j sin wt (36)
jooT
0
Hence " ol )
|H(w)|2 . =2 c<2>s @l sz (37)
(wT) >
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Therefore the variance of Y3 is

€ 2

-

sinm—T
D2(y3) = ] “2(‘*’)( mTz) do (38)
0

where Wz(co) is the power spectrum of y,.

For low signal to noise ratios the smoothing time must be long
compared to the inverse bandwidtn of WZ( w), Under these assumptions w2( w)

in Eq. (38) can be considered constant at W2(O) = lim W (co) Thus
w— O+

<o

= o fGHR
SN ===
D2(y3) = wz(o)f( 2 ) = 7 W,(0) (39)
0

WZ(O) is calculated most readily from the corresponding autocorrelation

function \112(':)

e

W, () =% f ¥,(7) e I 4o (Lo)

~CO

Now V(%) = E[ygm yolt + )]

Ml ’_I\E M M l'
=) Z EI s(8) + 0y (1)) [s(0) + ny(0)] [t + ©) + 2+ )]
1=1 =1 b=l k=1

[s(t + T) + nk(t + ’L‘)_J }
M M
- ) f }: Z E{sz(t) 30 )

+ s(t) s(t.+ T)[nj(t) n(t + 7) +n.(t) n (¢ + 'v)] + s2(t) n (t + 7) n(t + 1)

+ s2(t ) ni(t) nj(t) 2 ni(t) nj(t) nh(t +T) nk(t + 'r)l

(L41)
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The symbol E{‘ }is used to designate the mathematiceal expectation
of the bracketed quantity.

The first term of Eq. (L1) results from the intermodulation of signal

with signal, the next threc from intermodulation of signal with noise, and

the last term from intermodulation of noise with noise. When the signal
to noise ratio is low (the situation of primary interest) the lost term

dominates, One can thereforc approximate

M M M M
WZ(T) = ET }: S: E: {r&ﬂt) nj(t) nh(t + T) nk(t + 7)
i=1 j=1 h=1 k=1

7 (L2)
An equivelent approximation was made by Bryn in the derivation of the

likelihood ratio detector, When the noise is Gaussian, one can use Eq. (17)
to express Eq, (42) in the form

£}

lni(t)nj(t)nh(t + T)nk(t + T)}

= Efni(t)nj(t) E nh(t + T)nk(t + T } + E{ 1(t)nh(t + T;%Ein (t)n (& +’r%
+ E{ni(t)nk(t +’r)}E{ (t)n (¢ + T)} (L3)
Introducing the nomenclature
E{ni(t) nj(t + T)} =N qij(T) (L)
Eq. (L43) becomes
Elni(t) nj(t) n (t +7) n (s ¢ T)} = Nz[qij(o) Ay (0) + qp (%) qjk(’t)
¥ qik(r) qjh(r)] (L5)
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N is the average noise power at cach hydrophone (os in part ITI) and
qij(r) is the normalized crosscorrelation between the noise components
at hydrophones i and j. Using Egs. (39), (4O), (L2) and (L5) and

recognizing that the term qij(O) qhk(O) contributes only IC power, one

obtains
(ck)

D2(y3) = 2R S }__J zw fqih('r) qjk(f) dr

Hence the figure of merit corresponding to Eq. (29) is

A(DC output) _ S
M M M M < 2
D(YB) r2|"'2 W R N 17-
= ;ﬁ ) q.,(t) q., () at
T o L| ih Jk
i=1 j=1 h=1 k=1 “c
3 -\/i i
N V2 TH K W H o e
A S
- .>_J L4, ) %l qjk(T) ol
i=1 j=1 h=1 k=1 o

[da)
-~

(L6)

(L47)

Thus the figure of merit depends rather critically on J qih(r) qjk(T) G

-CO

Two cases will be considered.

1) Uncorrelated Noise

If the hydrophones are separaoted sufficiently so that qih(r) = 0 for

il # h, then

& (e}
[ o%(x) ar B = =
] a4y, (7) qjk(r) dt = 1 E

(8]

co 0 elscwherc

lThis'corresponds to the assumptions made in Progress Report No. 2.
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p(r) = qii(’f) is the noiwlizcd wnhecorralalimy Swoticrn £ +he wdige at

each hydrophone. When Eq. (L8) is satisfied

5(DC output) _ __S_\/T M (L49)
- =
D(y,) N lfpz(ﬂ d,r‘ :
J

L_C‘O

The equivalent result for the likelihood ratio detector is Eq, (32).
A typical situation in which Eq. (L8) is at least approximately
satisfied would be the following: The noise has a power spectrum flat

over 2 wide band 0 S w < w, and vanishing for «© > w_, Then

sin wa'r
p(t) = ————, w_ lorge (50)
0T a
Thus
(.33 [s)
> sin” o 7T =
p°(T) av = ——p 4t = — (51)
W
(o 7) a
-C2 ) a
Hence Eq. (L9) assumes the form
a(DG.output) . S Y12
= e M (52)
D
(v3)
Introducing the symbol No = 5[\-]— , the valuec of the noise spectral density
a
for 0w sw
a
S
A(DC output) . 2 -/ T \,_"1=M (53)
D(y3) No 2n @,

If the frequency range being processcd by the optimum detector coincides
with- OS® = Wy Eq. (32) can be written in the folleowing form [i‘or

= <
N(w) No’ 05w Swa]
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m = p)
A(DC output) - _S__ _T_ [ S(w) (5h)
D(output) N V2n 5 1)
The ratio of the two figures of merit is
- w (D'\
performance index of optimum detector _ "\ _a f(‘[S(co)]z deo (&L
performance index of standard detector 2
0

The reason for terminating the processing range of the optimum
detector at wa is almost certainly thot virtually all of the signal power
is concentrated in the range 0 < w g @ . Thus it is reasonable to

assume that

w

f S(w) & = § (56)
0

If onc expresses the spectral functicn by

S

s
( Flew) dw =0
0

S(w) = + Fw)

then Eq. (56) demands

It fcllows that

w, © y
[ S(m) [ ——+2—F(m)+F(m) dw
.0 a
w )
S 4 Fo () do 32 > (57)
5 L34 7
6]
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. with cquality if oand only if S(w) =

DSI 2

'

When S(w) = éL the ratio of the performance indices[;Eq. (55)] is
a

unity. In genecrol, therecfore,

performance index of optimum detector o

g i (s8)

performance index of standard detecctor

Thus if the signal as well as the noise has properties of white noise
bandlimited to 0 S w < @ the optimum detector is identical in perfommance
with the standard detector. If the signcl has different spectral properties
the optimum detector makes use of these properties to improve performonce
while the standard detector is only sensitive to total signal power.

2) Markov Noise

If the crosscorrelation between hydrophones does not vanish, additional
terms in the quadruple sum of Eq. (L7) must be considered. Assuming that
the noise at each hydrophone consists primarily of far ficld noise; a
recasonable approximation to the noise autocorrelatian function might be

- w il
p(t) =e ° (59)
w_ is the frequency (in radions per second) at which the noisc spectrum has
fallen to half of its low frequency value., Where numerical computations
are colled for the numerical value mo = 2n x 1500 = 9420 radians/second
will be used.

The problem of computing qih(r) from p(T) has been discussed in

Progress Report No. 1. With a spherically isotropic noise field the

required rclation is T+Tih

G (L= p(t) dr (60)

s
ih 2.
ih

n3=’7
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&,
where L —%E C dih is the distance between the ith und hth Lydrophones

(a non-negative quantity) and c is the velocity of sound in water,

Substituting Eq. (59) into Eq. (60) one obtains by straightforward

computation ,
- T,
1 e @ O ih cosh @ T It <.
5 Lo, o} =1l
a (T) = o ih
ih
1 —u)ol’tl
e sinh w_ T, Ny o
el o ih ih
X 0 ih
(61)
qih(r) is evidently non-negative for all values of T and Tin Thus all

texrms in the fourfold sum of Eq. (47) are non-negative. It follows that
noise coherence from hydrophone to hydrophone (at least of the type

assumed here) can only reduce the figure of merit relative to the value

given by Eq. (49).

co

The computation of jr qih(r) qjk(r) dt is tedious but straightforward.

-=C2

Assuming Tjk > Tih

function of T one obtains

and taking advantage of the fact that qih(r) is an even

(0]

I (%) qjk(r) dv =

«-CO

Tin
2 . “o'ih fi 0% 3k
—— [l -e %1 coshw T}l} ~- e ¥ cosh wd{] dv
i &
o ‘ih Jk 4
T
2 Jk o “© T,
T e ° sinh @ Ty [l ~e % 9% cosh on] dat
“s "ih T3k
ih
[o o]
5 -2 T
T e —— e sinh o 7., sinh o ik dv (62)
=% T
o ‘ih ‘jk %
Jk
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After integration and some algebraic ianipulotion this becomes
e}

~CD

-0 T W T
2 J 1 o ih jk| .
3 e e el i G sinh ® T,
o ‘ih Jkl ©
+ l eﬂﬁo(Tih+TJk) ;L sinh @ T osh @ T +1
2 o o'ih ©95% ®5%h T Tih
-0 T, - T,
+ -— sinh O T, e © ih - ¢ © Jk)
o, ih
-0 T, -0 T -20 T, =
- % & o jk sinh w T T - T + —l- c o 'ih ® 9913 )
c © ah | e ih 9y
o
N
2w T
ik - q , o jkl
+ = sinh w. T, sin wdrjk o [ (63)
o

For numerical values likely to occur in practice this equation can be
simplified considercbly. If the minimum distance between hydrophones is
2 =l
n =3 > =
2 feet and one uses c¢ = 4750 ft/scc, 5 750 = L.21 x 107" see. for
i A h.  Wth w = 9420 rad/sec, ® T 2 3.97 ford # h. Hence the
approximation

w T,
~ o ih

. ~ ils .
sinh © 7., ¥ cosh w7, T 5 e a1 458 B (6L)

ih

introduces negligible error. Using Eq. (6L) and discarding terms of

=0Ty ;
order ¢ ond smaller, one obtains
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o Bw
)
=H s s - ( ) (t.,~7..)
o' jk "ih i o' jk 'ih 1 o' jk "ih
|- ) ik
g 2 T T ’1
e [3+wo(r.k~rh>j]>,ifh,j#k
w =<
o ih

this reduccs to

2

)

@ Tik

S . . _
ST
orpig (66)

Similar expressions must now be obtained for the coses i = hy, j = k and

i=h, j#k

co

q,; () qjj(T) dv

[age]
-2wolrl
e T

il
- (67)
(o]
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< (o)

qii(r) qjk(T) dt = 2 qii(r) qjk(T) dr

=CD o
T. (52
o ka -0 T - T o -20 T
= l1-ce I¥ cosh © T) e %4t + e © sinh © T, 4t
o jk
@9, G w T
o jk o jk 5
0 jk
- T
__2 _ o Ok 1
3 —2—[1 e L +30, Tjk)J (68)
W T,
o jk

Results for Linear Array with Equally Spaced Elcments

A1l of the terms of the fourfold sum in Eq. (L47) arc now available and
the evaluation of the output signal to noise ratio becomes in principlec a
straightforward computational problem, Unfortunately the number of terms
grows very rapidly with M and manual computation quickly becomes impractical
unless some simplifications arc made. A configuration leading to
particularly simple results is a linear array with equally spaced elements.

Here

Tip = i - h| T (69)

where Gl is the time requirecd by a sound wave to traverse the distance
betwecen adjacent hydrophones.

If one uses the notation

[oe)
LD
then for the array satisfying Eq, (69)
Pom 2 B L e skl (72)
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i.e., the coefficients of the fourfold sum cnu bLe chorneterized cfiectively

by two rather than four subscripts. With the change of varinble

Ll et bl RO

i-he=2¢ ¢9a)
the sum becomes
M M
'\""—'l = Y
i =
{ Ci,h,j,k C\i—hl 5 13-k\
i,j,hk =1 i,j,h,k = 1
M 1 M-l
= + -
MO, o * 2 > ) (M- )8, 1)
l__ ey
gk =1 =1 &=L
(73)

A scheme for counting the number of identical terms for each value of ¢

is indicated in Fig, 2.

o =2 Y-

¥
'Y
2,
1 2/ Q
i 7
%

1 3

2
l “1 M h
l Fig. 2
¥ A3-27



The further change of variable

= E. 2 (7h)
leads to the form
M
N M-1 M-~1
C =M c +2MT(M—S)C +2M(>—‘(M-8)C
sl de < 0,0 L 0,5 = Z,0
g=1 2=1
1,i,h,k =1
M-1 M-1
7 ] e
+ N L2 (M- 2)(M - s) Cz,S
¢=1 s=1
M-1 %:1 M:}
2
M co,o + init z (1~ s) co,S s }4 (M - )1 - s)Cg,S
s=1 £=1 s=1
(75)
The coefficients ¢ , C  and C, _ are given by Egs. (67), (68), and (65)
©50°, | O8 t,s
respectively (with Cuelc B, Do = 8?0).

A further considerable simplification can be made if we recognize that
for the numerical values introduced on page 22 (@ = 9L20 rad./sec. ,
hydrophone spacing 7_ = 2 £t.), ® T, = 3.97. Hence e 0.0189,
so that the exponential terms in the definitions of the coefficients Cg 3

J
can be omitted with only very minor error. Then

=
0,0 5; (76)
ol 2
c = s #0 (77)
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/ \
il 2
o seoT F
o oo
C, %
V,u X 2
a)]—‘x T L >s ) 5,4 £ 0O (78)
o oo
o o_ma i 3 )
= i = s s =4
: JJO S(A)O'L'o L‘wo’tos )
Now
M
C,. g X
L ll"h|y {3-k
4
10,3,k = 1
{
| M-1 V-1 ‘
Ll gy M-os= o) Y (1 - 5)° =2 =
o N { o T sW T Lo T s)
2 [ s=1 s=1 TR 0o
}
-1 s=1 -1 ¢-1 ;
- 1 2
+u~}4 L (M - &) = 5) = +h 1 -3l = 8) o= >
s=2 ¢=1 g:z s=1 00 "
1( M-1 M-1
<0 =
=—1-<1~12+ MLH:'E+> LM_"_E)__l__3___)
®o “To s ) < Lot s
| s=1 s=1 2l
ML §=i) I'
U S (M- e)M - s)
= J
Hence the figure of merit of Eq. (L7) is
A(DC output)
D/
\y3)
5% M
N Y2 M-l M-1 M-1 s-1 i
L [ lee, 1Y (VI-s) ( 27 ¥ (M)(M_qﬂ >
w T i ] Lw TS x2
° PL g= 1 I s=1 i = e 1

N
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Discussion

a) If ot >>1, C, =0 unless s= ¢ =0, Inthis case (noise
00 Z,s

components at different hydrophones uncorrelated) Eq. (80) reduces to the
simple form

A(DC output) o) _,S__\/Tw_o ot (81)
D(y,) LR

This expression is similar in form to LEq. (52), but differs by a numerical
constant because the noice spectrum has a different shape than that assumed
in the earlier computation,

b)) BE w, T,o= 3.97, 0 = 94,20 rad./sec., as assumed earlier, and M = 5,

the figure of merit becomes

A(DC output) _ 159 ﬁ_ﬁ (82)
Dy;) - N
If signal and noise spectra have the same shape, the output signal
t0 noise ratio for the optimum detector uéing the same 5-element linear

array with 2-foot hydrophone spacing is from Eq. (30):

W

A(DC_output) Ef_ ; o)l @ (83)
D(output.) \/271 N g [ wJ

Bryn has plotted the array gain for a five-element equally spaced
linear arrgy. Adapting his plot to the parameters used in this computation
one finds that G(®) has essentially reached its maxirmum value of 5 at
@ = 7500 rad./sec. lMaking a rough appro:imaticn to the curve below that
frequency, one obtains the following numerical expression for output

signal to noise ratic in terms of the frequency @,
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5(DC output) .2 d% s o, - 5.55 x 10° (8L)

D(output )

g
N

fi

If @, 2n x 5000 = 31,000 rad./sec., this reduces to

5(DC output) ¥ 310 éi \EY

(85)
D(output)
If o, = 2n x 10,000 = 62,800 rad./sec., the corresponding value is
A(DC output) ¥ 1,90 ;L VET (86)

D(output) N

Thus the rms output signal to noise ratio of the optimal detector is better
than that of the standard detector by a factor of about 2,6 if the range

of frequencies processed by the optimum detector extends to 5000 cps and
by a factor of about 3.8 if the processed range extends to 10,000 cps.1
Which, if either, of these figures is realistic depends on the frequency
range over which the assumed equality in shape of signal and noise spectra
corresponds reasonably well to the actual facts.

c) In order to remove the somewhat arbitrary upper bound @, of the

2
freguency range processed by the optimum detector, an attempt will be

made to gain more insight into the probably high frequency behavior of the
signal spectrum, One factor that should undoubtedly be considered is the
frequency dependence of the transmission characteristics of water., Using

a model discussed by Eckart2 one oan write the following expression for

the signal spectrum received at each hydrophone

1No band limitation was assumed in the standard detector.

20, uckart, Optimal Rectifier Systems for the Detection of Steady
Signals, University of Califomia, lHarine Physics Laboratory of the
Scripps Institution of Oceanography, SIO Reference 52-11, L March 1952,
p. 13, Eq. (18),
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6 -6 x 107 Hrw?

Received spectrum = = e 5(w) (87)
r
S(w) is the signal spectrum at a point close to the target and r is the
target range in yards. Assuming S(w) and N(w) identical in shape, me

obtains from Eq. (29)

& Sy 2
6(DC_output) _ '\/_E_ _S_ }_Cf_ [ 3—12 TR [(;(cu)]z &  (88)
;N 2
D(output) r 0

S = /:S(w) & is the signal power at the reference point. Evaluation of the
0

integral is cumbersome because of frequency dependence of G(w). However,

since G(w) only varies from a minimum of 3.55 near ® = 0 to a maximm of 5

above & = 7500 rad./sec. , & reasonable approximation can be obtained by

treating it as a constant. Then

A{DC output) ~ _S_ VT g &:bL x 10 (89)
D(output) N 2

For G = }} this is

A(DC output) ~ 2.56 x 107 5_ VT

(90)
D(output) L N

For G = 5 the value is

A(DC output) ~ 3.20 x 100 S \T (
= 2 )
D(output) rW}" N

Except at extreme ranges (above 105 yards) Eq. (91) should be the

better approximation and will be used in further comparisons,
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For the standard detector the shape of the signal spectrum is
unimportant; only the total signal power matters. Hence the factor

-l 2
e 6x10"""rw can be ignored if it is essentially equal to unity over the

effective bandwidth of the signal spectrum., This is true if

6 x 1074 % 1500 x 2nr << 1

or (92)
r << 1.89 x lOS

Then the figure of merit for the standard detector becomes [from Eq. (825]

A(DC output) _ 1.29 x 108

2

5 Vr (93)

The ratio of Eqs. (91) and (93) assumes the form

rms signal to noise ratio of optimal detector  _ 2373 o = 0 105
T

ms signal to noise ratio of standard detectcr
(9L)

Thus even at a range of 100 yards the possible improvement due to the use
of optimal detection procedures is limited to a factor of somewhat less
than 8, (If the assumption of low signal to noise ratio remains valid,)

V, Concluding Remarks

The report has compared the performance of a likelihood ratio detector
with that of a standard detector on the basis of output signal to noise ratio,
Under the conditions investigated, the improvement attainable through use of
optimal (likelihood ratio) techniques was in most cases only moderate. It may

therefore be important to review once more the basic assumptions underlying

the analysis.
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1) Signal and noise were assumed to be independent Gaussian randum
processes,

2) The signal to noise ratio at each hydrophone was assumed to be
small compared to unity.

3) Signal and noise processes were assumed to be stationary and the
signal to nolse ratio at each hydrophcne was assumed to be the same,

L) Numerical calculations were concemed primarily with cases of
relatively broadband signals and noises, mostly with similar or
identical power spectra.

5) The array of hydrophones was considered fixed. Numerical
calculations dealt particularly with a linear array of equally

spaced elements.

Assumption 1) is particularly important. It implies that signal and
noise can be characterized gl}_y_ by their total power and spectral properties.
Of these two features the standard detector uses only total power, hence it
is in general inferior to the optimum detector. However, the report
indicates that (unless the spectra of signal and noise are drastically
different) the benefit to be derived from use of spectral properties is
quite limited. Further work is planned to investigate the improvements
possible with optimal detection schemes when there are pronounced
differences in signal and noise spectra. Signals containing narrowband
components at known or unknown frequencies would be a case of particular
interest.

The analytical treatment of non-Gaussian random processes tends to be
very difficult, and an attempt to solve +the problem under such assumptions
does not appear promising. However, if informatiom concerning waveshapes

of expected signals were attainable, great improvements in detector

performance might be possible. The analytical tools for handling this case
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are also available, An effort to search out features of the expected
signals related to waveshape rather than spectral preperties therefore
appears indicated,

Assumptions 3) and 5) suggest additional possibilities for further
investigations., It has been shown, for instance, that clipping can improve
the performance of a power detector when the noise power varies from
hydrophone to hydrophone,1 or as a function of time.2 It would be
interesting to investigate whether the optimum detector also performs an
operation analogous to clipping under these concditions. If hydrophone
locations are regarded as an additional set of adjustable parameters the
optimization procedure can, in principle at least, be carried one step
further. One could then perhaps inquire into the best location for a fixed
number of hydrophones in a2 given volwne and the performance index of the
associated optimal detector. It gppears unlikely that a very general
solution to this problem would be computationally feasible, but it would be
of interest to gain even limited insight into the dependence of system
performance on hydrophone location,

Finally the theory of optimal detection may provide a means for
assessing realistic costs of such signal processing techniques as clipping,
One could, for instance, compare the performance of an optimal detector
opérating on clipped nydrophone data with the performance of an optimal
detector operating on unclipped data. Whether such a2 comparison is
computationally manageable for cases of practical interest has not yet been

investigated,

A

lT. Usher, Signal Detection by Arrays in Noise Fields with Local Variations,
Progress Report No. 2, Electric Boat Co., Research, Yale University, March 1963,

2J. B, Thomas, T, R, Williams, On the Detection of Signals in Non-

Stationary Noise by Product Arrgys. J. Acoust, Soc., of America, Vol. 3L, No.l,
pp' hSB-héz, Apl'il 19590
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SIGNAL DETECTION BY ARRAYS WITH

ARBITRARY PROCESSORS AND DETECTORS

ile Introduction

The signal detection characteristics of local arrays of transducers
have been extensively analyzedl’z’3 for the situation in which:
1, The output of each transducer is subject to infinite clipping
or purely linear processing;
2. The processed output signal from each transducer is summed;
3, The summed result is applied to a square-law detector;

L, The squared sum is filtered,

However, the effect of a general nonlinear processo}.following each
transducer relative to signal detection efficiency has not been determined,
Neither has the effect of a general non-square laﬁ detector been
examined, It is the purpose of this report to investigate both effects,

The two performance indices defined in Reference 3 are used to provide
a numerical indication of the signal detection efficiency.,

The signal response ratio, Rl’ i1s defined to be the ratio of the
normalized average signal output of the system with either the nonlinear
processor or the non-square law detector to the normalized average signal
output for the system with the linear processor and square-law detector.

Simllarly, the index, R,, is defined to be the ratio of the square

29
root of the signal-to-noise ratio of the directivity pattern for the
system with either the nonlinear processor or the non-square law detector

to that for the system with the linear processor and square-law detector,

AL-1



The major purpose cf the analysis is to determine optimum processor
functions and optimum detector functions for maximizing both response
indices., Another ccusequence of the analysis is a derivation of a gsneral
expression giving the autocorrelation function for the outpuﬁ of a
nonlinear device in terms of the input autocorrelation function. The

major assumptions of the analysis are listed in the following section,
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IX.

Assumpticns and Definitions

The system analyzed in the following sections is shown in Fig. 1.

Transducers

@At ne)

Processors

1/ v, (t)

Low-Pass
" Summer Detector Filter
¥ |H(jo)l
x(El y(t z(t)
X
=111 - A

Fig. 1 Array with Nonlinear Processors and Non-Square Law Detector

Following are the major assumptions inherent in the analysis:

1,
2,

3¢

Lo

The transducers in the array have omnidirectional characteristics,
The autocorrelation functions of both the signal and the noise
inputs tc the processors are identical, The signal power input

and the noise power input to each processor do not vary from channel

to channel,

The cross-correlation between noise inputs for different charnels

is zero,

The signal and the noise inputs to the processors are Gaussian

and stationary, Signal and noise are independent,

AL=-3



5. The processor is an odd-function, zero-memory device,

6. The detector is an even-function device,
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III. Correlation Between the Output Signals of Identical Nonlinear Devices

Since the analysis of array performance in fcollowing sections recquires
an evaluation of the cross-correlation of the output signals from two
identical nonlinear devices, or the evaluation of the autocorrelation for
the output signal of a nonlinear device, a general derivation applicable
to both situations is made in this section,

It is assumed that the input variables are Gaussian, with zero mean,

and equal variances. Furthermore, the two-dimencional probability density

function is given by

2 2
f(eqse,) = > = epr:- e)” + e,” ~ 2aee, ] (1)
! (4
2no

1=
1
o]

The characteristic function of f(al,ez) in terms cf the complex

variables w. and w, is

1 2
[e o] [e o]
@(wl,wz) =f f exp[elwl + °2w2] f(el,ez) d.eld.e2
-0 00
02 2 2
= exp| 5 (w1 + Wy 2aw1w2) (2)

It is desired to find the statistical average of g(cl)g(ez) where
g{e) is a general nonlinear function with zero memory. The development
follows the transform method used in Chapter 13 of Reference L, The
correlation function ETE;TETE;j in its final form is expressed in terms of
a power series in a, the normalized correlation beiween 0y and 5

It is convenient to define the function g(e) in two parts:
(g(e) e20

g,(e) 5 (3)
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and 7
J 0 e >0
g_(e) = (L)
[gw) e <0
Then )
gle) =g (o) + g_(e) (=

The Laplace transforms for the two parts of g(e) are

~We
G+(w) =‘/P g, (e) e de (6)

6 )= | gle)e o (1)

=00

The inverse relations are found in Eqs. (8) and (9).

1 ew
g, () 2_n-j-j’ G, (w) ¢ du 8)
C
g_(e) E%B[G (W) e dw 9)
D

The required contours of integration are shown in Fig, 2. The
infinitesimal displacement A in each case is required for convergence
of the transforms., It is assumed that g(e) dces not increase exponentially.

B

A w-plane

- N —Rs

For contour C w = A + Jv

For contour D w = -5 + Jv

Fig, 2 Contours of Integration in the Complex w-Plane
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The correlation between g(el) and g(ez) is

gle;) gle,) = f f g(ey) gley) £(ey,e,) dede,  (10)

Substitution of the results of Eqs. (5), (8) and (9) into Eq. (10) gives

oo [0 o]
e W e.w
gielf g(e25 R > [ [ IG+(wl) 8 11 dwl +[G_(wl) € 11 dwl]
(2nJ) C D
P o Qe )

f e2w2 e2w2
X G+(w2) g dw2 + j'G-(wz) 3 dw2 f(el,ez) delde
C D
(11)
With the appiication of the definition in Eq. (2), Eq. (11) becomes

ele; ) ele,) = (2:3)2 [f‘"u (w)) G, (Wz@(“l’wz) S CHy
¢C ¢

+ j'[(‘z+(wl) G_(wz)@(wl,wz) dwldw2

CD

o f [ G_(w, ) G+(w2)@(wl,w2) dw, o,

D C

+ [ [ 6_(wy) ©_0ey) oy ) ey, (12)

B b

-

If the infinite series for exp[oza wlwz] is utilized for the corresponding

term in @'(wl,wz ), the double integrals in Eq. (12) become separable as
products of integrals.
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Since
® 2n n n

o a W
exp[oza wlwz] - i (13)
10 nl
then,
2. 2 2 2
= o Wy o W,
gle,J g(ey) = ) 4 (2nj)2 g LG e My (8o Sy &
n=0 c c
2 2 02 2
oWy ] W,
n 20 N n 2
i [wl G+(wl) ¢ W, [W, G_(wz) ) dw,,
C D
o g o
1 2
e k. n 2
3 wlnG_(wl) £ dﬂl ﬁrz G+(w2) £ dw,
D &
2 2 2

o"wy _
+j;rln G_(wl) g I dw ﬂ’Zn G_(wz) & dW2] (1k)

D D
Due to the product form of Eq., (1h), it may be rewritten as

2.2 o =" 2

E 2n n g4 ow

8(91) g(e27 = z - na' * )2 ﬁ’n G+(W) € : dw + [v" G (w) e 2 dw
¢ (2n) | g

C D

n=0

It may ke shown that

el(e) e do = wG, (w) - g(0)

and

: -we
g(e)e de=w G_(w) + g(0)

8
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where

"a) « 38
g (e) " (18)

Furthermore, the relaticns in Egs. (16) and (17) may be extended for the
rxlt'h derivative to yleld

d m -We . 2 (n-m) [m-1]
gle) e de=wo ).y w g (0) (19)
0 mel
an
: Z (n-m) -]
N=-m ) {Me
[ o) e S G (w) + Z w g (0) (20)
2 m=1
wiere
o) - 48 @)
de

When the results of Egs., (19) and (20) are substituted into Eq. (15),
Eq. (22) is obtained,

B D
2 2 72
L {n-m ) [m-1] c 2w
_7 w g (0)e? dw (e2)
m==1D
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It can be shown that the terms involving g (0) cancel (See

Appendix A ) because the difference of the integrals over contours C and D
may be made as small as desired by making A in Fig, 2 arbitrarily small,
The inverse transform of the single-dimensional characteristic

function, yields the Gaussian probability density function:

02w2 e2
~=We - ezmaey
5%3 ‘]; SRR fe) (23)
Ver o
ct

The contour C' is the imaginary axis of the w-plane. Since C and D may be

made arbitrarily close to the imaginary axis of the w-plane, Eq. (22)

becomes
2
oo
o2nan (n] [n]
gle.) gle,) = E: — g (e) f(e)ds + | g (e) f(e) de (2k4)
1 2 nd + =

n=0 o B

Finally,

oo
2n ~———2
(n) n
AT R z ok
gle ) gls, —5 & (o) a (25)
n=0
In Eq, (25) the bar indicates an average with Gaussian statistics

for e, An alternate form of Eq, (25) is possible since it can be shown

(See Appendix B) that

g™e) = o™ K [2]g(e) (26)

In Eq. (26) an%) is the Hermite polynomial of order n with %_as the
argument.,

Then

B
g6, T86,) = ), =3 H [2lete) a” (@)
D=0

AL-10
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The results in Eq. (25) and (27) can be used in determining the cross-
correlation between the output variables of identical nonlinear processors,
In this case, a is the normalized cross-correlation between the input
variables of the processors, The result can also be used to determine
the autocorrelation function of the output of a nonlinear processor, In
the latter case, ey and e, represent the input variable at two different

times and a is the normalized autocorrelation function of the input

variable,
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IV. Average Signal Output--Nonlinear Processors and Square Law Detector

The symbols and definitions in Reference 3 will be followed as closely
as possible, For the system with the nonlinear processors, the directivity

pattern is

M M
O NN ORI T NOEENON (28)
{=1 j=1

For the input signals to the processors,
2
o =S+ N (29)

The normalized cross—correlation a is
S

| TTH p(Tij) 143
8.(v) + n (v)]8,(v) + n,(t )
a=[1 45784 N (30)
S+ N
1 1=

\

In Egs. (29) and (30), p is the normalized autocorrelation function
for the signal,S is the total signal power, and N is the total noise power,

The depend on the spatial time delays and electrical time delays

T4 4
associated with the typical steered array.

The results in Eqs. (25) and (27 ) may be used to simplify Eq. (28).
It should be noted, however, that when a = 1, Eq. (25) reduces to one term,
the mean square value of g(e). Furthermore, the processor function in the
array has been assumed to have odd symmetry, so that only odd order terms
in Egs. (25) and (27) are present.
Using Eq. (25), we have

(2n+1) T?EIET__Z Pn+l

M M o
VO =ueelr2y ) 272-5—1)- g (o) o () (1)
i=1 j=i+1 n=0 ‘" v

AL-12
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The "on target" response occurs when all T, , = O, and the "of[ target"

1)

respanse occurs when the Tij are all large enough so that the p(Tij)

approach zero. These responses are found in Eqs. (32) and (33)

respectively,

z S(2n+1) lr‘n+l]( )
y Ta-7F - 2= 1Y
8y = - (M-1) 220
2
it g(e)

For the system with linear processors, g(e) = Ke and

= g 2
Vo = K (M + SM7)
Y., = K2M(N + 8)
AL
=0
A}’A = (M — 1)
S + N

The signal response ratio, Rl’ has previously been defined to be the

ratio of Ay to diA.

~ g2
7 gy
_ 4§ _[s+X| neo (3n* 1)
n by S 2
A g(e)
AL-13
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(34)

(35)
(36)
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An alternate form of R is obtained by using Eq. (26):

(o o]

E; i ‘ S )Zn H2n+l(;7=§=ﬁq

=0 (2n+ 1) 'S+ N S+ N

2
g(e)

el (29)

gle)

Frem Eq. (39) it is evident that only the first term of the serics is

laportant for small values of input signal to noise ratio., Then

[
11 -—1-72
}?.l_'~3'o g_(e) _ _eglo for % <<1 (Lo)
) o R :
g(e) o g(e)

It is interesting to note from Eq. (38) that for large values of

signal to noise ratio

S
S+ N

= aﬁl

and the sum in the numerator cf Eq. (38) approaches g(e)z. Thus the signal
response ratio approaches unity. Under strong signal conditions, then, the
average signal performance of the system with nonlinear processors approaches
that of the system with linear processors.,

Also if one considers the non-negative function

(n g(e)+e)23 0 ()

where A is an arbitrary parameter, we have by expansion,

ng(e)2 + 2N egley + & z 0 (L2)

Since there can be no real, unequal roots for 1,

egie52 - o‘2 g(e)2 < 0 (L3)
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Applying the result in Eq. (L3) to the small signal spproximation for
Rl’ we have

Rl <1 for <% << (Lh)

Since all terms in the series expression for R1 are positive, unity
is an upper bound for R1 for all ratios of signal to noise. Furthermore,
the equality in Egs. (L1) through (L3) holds only if g(e) is a linear function
of e (1,e., g(e) = ko), so that the signal response ratio is less than unity
for all finite input signal-to-noise ratios for all nonlinear processors.,
Thus the linear processor is optimum in the sense of producing maximm

average output signal for the array,
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V. Signal-to-Noise Ratio at Output of Array--Nonlinear Processors and
Square Law Detector

The goal of this section i1s the development of an expression for the
performance irndex, R2’ which is the ratio of the square roct of the signal-
to-noise ratio for the system with nonlinear processors to that for the
system with linear processors. OSince the expressions for average signal
output were developed in the previous section, most of the analytical
development in this section will be concerned with the evaluation of the
variance of the ocutput of the low-pass filter in Fig. 1.

In general
R(%) = E[y(8) 7t + ©)] = 7 + R, (%), (15)

- !
where y represents the average array output, and R (t) is the autocorrelation

function for the variational component of y(t). If

1
fa(ge) = g (46)
“F
from Eq. (56), Reference 3, we have
022’2 oy Ry'(T) dt (a small) (47)
0

For the analysis of array performance with nonlinear processors, it
will be assumed that the input signal-to-noise ratio is sufficiently small
80 that only the input noise contributes to noise (022) at the output,
This assumption 18 necessary for making the analysis tractable, and also
is not unduly restrictive, since only small signal-to-noise ratios produce

any detection problems,
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Thus the autocorrelation function for y(t) becomes

Ry(v) = E[x%t) x%t + T)]

M

-5| Y }fg{nim} efn,(0)) f fg{nk@ ol e w00

k=1 £=1

121 3=1

The evaluation of Eq. (L8) is helped by separating the terms into the

different categories as shown in Table 1.

| Subseript Number Evaluation and commentus
relations of terms
1=3 andk = ¢ M i # k ylelds M° - M terms.
2 2 =2
E[g (ni)] E[g (nk)] =g
L = k ylelds M terms,
2 2
E[g {ni(t)} g {ni(t + T }]
123 and kpe| 20P -1) Yields
2
1/ and k=2 E[g (n, ) g(n, ) g(ng)] =0
because n and n, are uncorrelated
and g(n) is odd,
143 and k # 7 Mb -l e M Only terms of the type where i = k,
J=4¢; and i = &, § = k are non-zero,
2(M° = M) in number)

Table 1 Classification of Terms in Eq, (UL8)
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From Table 1, Eq. (LB) becomes

2
\ 2 =
R (7) = (F - M) g°(a) + Mg le(t)l gXe(t + "r)}+ 2L - )RR i ﬂ}'z
Y , !
(L9)
Both the second and third terms of Eq. (49) may be evaluated using the

result in Eq, (26). For the second term, since g2 (e) is an even function,

we have

= ———?
g2y g (ey) = ) —=— H, [Sle°(e) o7(v)

%2
+ %.',_ H6(%)gd p6('r) G (50)
For the third term,
o 2
{L‘E 2
gle;) g(e?)2 =) —— H2n+1(%)g(e) o2 (1)
‘n_:O (2n + 1)1

e 2 2
. Hl(%)g p2('c) g %} Hl(%)g HB‘%\% Ph('\?)

— 2 2

oy B8e + & 5[Ze A fSe | o)

i 2 2 2 2]

+L312: fy(2le *fs‘%)g wa7 S H7{%]ng8(’“)+ o
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Substituting the results from Egs, (50) and (51) into Eq. (L49) and

collecting terms, we have

CfTEE g SS9 g S )
Ry(T) = (M g ) + M 5T H2g p +-EI th o + ,,")

" o
+2(M2-M)(ng4p2+_3_ 2 752 ob

3‘| lg 3g P t oee (52)

For large M, the terms multiplying M in Eq. (52) may be neglected in

comparison with those multiplying 2(M2 - M), since in general the order

of magnitude of internal terms multiplying p2n is gencrally the same, Also

the term (M? )2 in Eq. (52) is simply the -y-2 term in Eq. (45). From

Eq. (U7),
00 o

0,° ¥ 20,0 - 1) @h[ozm " e ﬁa—ézfp'“‘dw * e (53)

0 0

f 3

For the linear system for small signals, from Eg, (L9), Reference 3,

we have .

o Boe@ [ 2
oZA=2mFM2K prd’t,‘
0

24 R )]
A
A -
=i

(54)

The definltion of R2 yields

Yo =~ ¥ c
-2 L. 2 (s5)

R, = = =
Yho "V, %

Substitution of the results in Eqs. (32), (33), (35), (36), (53) and (54)

for small -SN results in the following expression.,
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- =1/2
T & o W2l a
R, =1+ 2 3 . —B + 1 2 + % 2 -é +
| e Sl cee
2 37 E—EZ A 3131 i gH T i gz A
1 2 1 g 2
Ns- < <%‘-4 <<1] (56)
In Eq. (56) 4, 1s defined to be
Qo
Ay = [ p?%(7) dv (57)
0

The alternative form of Eq. (56) utilizing derivatives of g(e) is

TP o, B\ e
31" A (5]
L 2 g3 L, 8 1 2
el R B A Y '[1?*3'1-13_-12 =+ .. b
g 2 g g
An inspection of Eq. (58) reveals that R, is less than unity for all
g(e) for which
2n+1 Ton¥
H2n+1(%)g(e) = M gty 4o forn=1 (59)
The only function excluded from the inequality in Eq. (59) is the linear
function g(e) = ke, for which
i (2ete) = o g(e) = o (60)

and

o(2n+l) el oo

H2n+lL%]g(e) = for n >1 (61)

Thus the linear processor is optimum because it produces a signal-to-noise
ratio at the array output which is greater than the signal-to-noise ratio for
any nonlinear processor,

In the following section, the general results in Sections IV and V are

evaluated for several types of nonlinear processors,
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VI. Evaluation of Rl and R2 for Specitic Nonlinear Processors

A wide class of nonlinear processors is described by the general power

law relation found in Eq. (62). Note that g(e) is an odd function of ec.

Ke™ : fore >0
g(e) =< 0 fore =0 (62)
~Kle™ fore <0

\

From Reference 6, page 20, it is given that

% T il
il w= "% uie il e 1y ‘=S
- € x dx = —= 2 —_— (63)
J( \[E; \/2n ( € )
0

where (k)! is the general factorial function (k is not necessarily an integer).

The averages of the functions found in Eq. (LO) are calculated below.

o 2
= = §+1
e gle) = %/r o ke o o Ezzde A =l (6k4)
Vor' o Ven k
0
Also,
@ 2
3 2 2 - 52 & bm DG 1
glef =2 KoL 200 L Mo = n_2): (65)
Van o \/5%
0
The performance index R1 becomes
m\ . m m\, _,
L D
By (m) = = Ty, ~ Tmel T 1 (66)
Vo' [m-g)t 2" (G- g - 3)t

The last term in Eq. (66) is evident because of the identity (see Reference
8; p. 36)

3013 - 3 Ve -
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The result in Eq. (66) is plotted in Fig. 3. It can be seen that the
maximum value of R1 occurs for m = 1, However, the peak is sufficiently
broad so that the value of m may vary between zero and three so that the
value of Rl > .6, -Note that the value m = O yields the function whi;h
describes the infinite clipper.

Next, the performance index R, found in.Eq, (58) will ve evaluated
for the odd-function power-law processor. The averaged derivatives in

Eq. (58) are

m
gie) - £BE) . 2L 1,2 ), (68)
loj \/Zn g
e
3] n-3 _1 T 242
g--(e) = ?/'K mm-1)(m-2) e — ¢ de
2
A Ver o
o (m - 1)(3) (69)
e2
[%), QM5 _1 252 4
° (m - S)I Von o = °
2k meS 2 ),
=75_1—1;0m 2 (m-l)(m-B)(-I—g). (70)
Using
-0 |7
p(t) = ¢ ° (11)

one obtains from Eq. (57)

"
=

(72)

Thus R2 becomes
1/2

Lma1f e 2ma1)? (m-3)}+... (73)

ik 2
%m)=1+3m-1)+{m8 160
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Fig. 3 Performance Indices for Odd-Function Power-Law Processors




Equation (73) is evaluated and plotted as a function of m in Fig. 3. It may
be noted that the series terminates when m is an odd integer, and converges
rapidly when m is reasonably small.

The maximum value of R2 is seen to occur for m = 1, as expected, The

peak of the function, however, is again very broad,

Another processor function which has evoked some interest is thea

infinite clipper with a dead zone at high amplitude, The function is shown

in Fig. L. 2(e)

l e
|
|
I
i

e

-e

gl

o

Fig. L Infinite Clipper with High Amplitude Dead Zone

In order to evaluate R in Eq. (4O) we have

e 2 e e
L __. __;lz
e gle) =2 . 20 de s7/2 ol1- ¢ 2° (7h)
\Vn o T
0
P 21 _ e2 .
gle) =2 = 20° de = P 1% (75)
W/2n Lo/
0
In Eq. (75), the normal probability function P(X) is defined by’
X 2
= e
P(X) = | === & 2 ax (76)
\V 2n
=X
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Thus.the index R1 is

5 2
s
2 2
-1l -c¢
R, (a) = ! - a--e-} (17)
a
For small a, Eg. (77) reduces to
R (a) = —2= (o)’ a<<1l (78)

2\[2n

Equation (77) is evaluated and plotted in Fig. 5.

It is evident from an examination of Fig. 5 and Eq. (78) that the
infinite clipper with high-amplitude dead-band is an extremely poor
processor to use if the variance of input noise is large relative to thse
level at which the dead zone appears. For all values of a the device is
inferior to a simple infinite clipper.

An expression for the signal-to-noise performance index may be written

following the calculation of the required averaged functions found in

Eq. (56 )o

e1 e2 a2 1
Hﬂ%)g(e)qu %‘\}’-‘“2-3-;—-05 Egdeu % l-c¢ - (79)
0 | N
Also el
Honeal5l8Ce) = 2[ Homa(2) €3] 43) - 2[H2n(0) £(0) - Hy,(a) f(a)}
0

ns= 0,1,2,oo¢ (80)
In Eq. (80) £(a) is the Gaussian density function of the normalized

variable a. Since
H (a) £(a) = (<1)" £%%a) (81)
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Eq. (80) becames

Hypea(3) 8Ce) = 2[1@11](0) - i[znl(“)] =238, (a) (82)

The functions in Eq. (32) are tabulated in Reference 8, The performance

index R, in Eq. (83) is obtained by using Eq. (56). Note that higher order
terms have been added to Eq. (83).

2 L 2
B B . B
Rz(a) ) 1 ' %'—g) . 1 _g) ' .-L(—L-l)
6\B,, 108\ B, 180\B
2, 12 2
1Lk0\B, | | B, 10080\ B,, }
2 2

L 2

B B B B

N __h) ,—in g)(_é) ___1_.__(_@)
72000{B,|  75600\B,| \B,/  907,200\B,

2/, \2 2,0 12
9 S I
1,815,000\B,/ B, 6,530,000{B./ |\ B

0 0

|
J

-1/2

B 2
1155285 6

>

The series in Eq. (83) does not converge well for values of a < 1,

For a = 0, the series is definitely divergent so that RQ(O) = 0, Resulus
from Eq. (83) are plotted in Fig, 5.

From Fig, 5, it can be seen that the performance of the infinite
clipper with high-amplitude dead-band approaches that of the simple infinite
clipper for lafge a = el/o, as expected, Below a = 3, however, the
performance indices decrease rather sharply, which indicates that the device

has little utility as a processor,
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Fig. 5 Performance Indices for Infinite Clipper
with High Amplitude Dead Band
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VII. Average Signal Output--Liucar Processors and Non-Square Law Detector

In preceding sections it has been determined that the use of linear
processors with a square-law detector maximizes both performance indices.
In this section the performance of a non-square law detector with linear
processors will be examined, It would be desirable to obtain e#pressions
for the performance indices of arrays utilizing nonlinear processors and a
non-square law detector, but the mathematical expressions become extremely
cumbersome, For this reason, the follewing analysis is limited as indicated.
Since the use of linear processcrs with square-law detectors was optimum,
perhaps the use of linear processors with non-square law detectors is not
unduly restrictive, .

With reference to Fig. 1, the detector function y(x) is assumed to be
an even function of x, The input x is Gaussian because the transducer
outputs are all Gaussian, and the processors are linear, For the "on
target" case, the signal components from each channel are completely
correlated and the noise components are assumed to be uncorrelated. For

the "on target" case x(t) becomes
x(t) = x5(t) = Ma(t) + M;/zn(t) (8L)

where s(t) and n(t) are representative signal and noise time functions at
any transducer output. For the "off target" case, the signal components

are uncorrelated, and so are the noise components., We have

x(6) = x (8) = MY/2s(t) + MY 20 (s) (85)
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The "on target" and "off target" array outputs are defined by Eqs. (86)
and (87).

.50 = sz’ s y(Ms + Ml/zn) (86)
¥, = T&) = v/ % + /%) (87)

Both y(xo) and y(xL) can be expanded in a Taylor series around the argument
Ml/zn and the averages taken as indicated in Eqs. (86) and (87), These
operations yleld

5, = y0/%n +-@24—fﬁy[21(F2n +%_§——E;E](Ml;2n)+

one

L (o) TEEGATES L (e

(2n)?
and
2 - 2L
5, = 70 + 2L T e T

5 -
% YladZhy o . (89)
n

Only even order terms appear in Eqs. (88) and (89) since the average of

LN +

odd order derivatives of even functions yield zero.

The normalized signal cutput is

g zf“mw

, 5 2k
) - 0L - 21 £ (50)

5 Z s SRR
(2k)z
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For the square law detector,

M(S + N) S+ N

Thus the signal performance index is

oo

Z pikel , offB=E L ¢ B sk T2

(2 )¢

R - (ay) _ N+ kel

(ay) S
(2k)1

From Eq. (26)

n

y &t/ 2, () -2 v 0/%n)

(91)

(92)

(93)

With the relation in Eq. (93), Eq. (92) may be put in an alternate form:

_N+S 21 + (2 )1 +1(§) szN 5| ¥/ %n)
S 2: (;‘]S-) 2k Nl y(4/%n)

(9k)

It is evident from an examination of Eq. (94) that only the first term of

each serles expression is not negligible for small values of %. For small

values of § we have

N
Rl_%“z;,v}y( /%n) ] %mj_WT 3 (2} y(x)
m y(Mlm ¥
x = M/%
o° = N
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The expressicn in Eq, (95) does not yield an optimum detecter function
y{x). A demonstration of the validity of this statement is fouvnd in

Section IX, in which Rl is evaluated for different detector functions,
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VIII. Signal~to-Noise Ratio--Linear Processors and Non-Square Law Detector

For the purpose of mathematical simplicity, the signal-to-noise
performance index R2 is determined for small values of %.
Since x(t) is Gaussian Eq., (26) may be applied to yield an

expression for the autocorrelation function of the detector output:
2 e
2] 2 8
R(x) = TR + 3 & F00) 62(x) + iy & 3P ) o o

e ) P

=4 2
. Z e ohk ytzk](x 2k ()
(2K )

(96)
k=0
The first term of Eq. (96) is simply the square of the average array output,

and all other terms represent the autocorrelation of the variational

!
component of y(t). Thus, for low values of %, Ry(T) becomes

o ——
R = )~ )P SRR 2n) o2 () (97)
Vo e @)
Also
4 —— 2
oz2 = ap Z wifil, (MN)Zk yIZkJ(Ml; %n) /ka("’) dt (98)
oo (2
0
For the square-law detector (y = xz), either Eq. (5L), in which
K =1, or Eq. (98) gives oZAzz
°ZA2 = 2 @p M2 N2 j( pa(x) dt (99)

0
The definition of R, in Eq. (55) together with the first two terms in

Eqs. (88) and (89) and also Egs. (35), (36), (57), (98), and (99) yield

the expression for Rz.
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[ 2
] 2 A
R, - Z (zi)' oy 2K2 AT (1l n)2 A2k o
=i | 3[r (E’ 2n) 2 X = Ml/zn

: -1/2
T2 A 't?g'z A
g b ¥ be) Th o2 6 ) 6
- 1"’ —lt: ==Lk oieie
R e WL L
youx) "2 you(x) €

An alternate form of Eq., (100) is

e e v
H(Z) y(x) 4 H (%) y(x) A

R2- 1+ 2: h(O) 2 X‘L_‘*'B?.'g 60 2 ;‘é"'c.o
H(E) ye) fo B (E) yx) M

For the function y = x° it is observed that

y[2k](x) =0 for k>1

and thus y[gk](x) =0 for k>1

For all other functions

y[2k](x) § 0 for some k and x

and thus y(zm(x) # 0 for some k

(100)

(101)

Since all terms in Eqs, (100) and (101) are positive, y(x) = Kx® therefore

produces a maximum value for R2 , and the square-law detector is optimum with

respect to output signal-to-noise ratio,

In the following section, and are evaluated for specific detector
1%

functions,
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IX, Evaluation of Rl and R2 for Spec.ific Detector Functions

A wide class of detector functions is described by the general power

law relation found in Eq. (102). Note that y(x) is an even function of x.
y(x) = Kjx|" (102)

Equation (63) is helpful in evaluating ytz](x) and y(x):

X m-1
2 (m -1,
m-afxx_m 7dx=\/—:1<oz (2= (103)
0
L) 2
'%3;-2 2 m.-2 'Ip-.éim 1

2] -2 1 -2 L
y (x)-? K m(m = 1) x" \/_.._2;;5 dx=v-;l(o m 2 (-—2——)2(10&)

0

From Eq, (95) we obtain Rl(m):
Ry(n) =3 (205)

As can be seen from Eq, (105) the signal performance index increases linearly

with m,

The higher order average derivatives are computed below.

x
y x)-2me(m-l)(m-2\(m-3) mel 1 2_<;de

?x

0
m-1
-\lgl(c m(m-2)22m"1)3 (106)
) 4 2x 6 an - 2= 1) 2 2 ('“"1) (107)
Also from Eq. (71)
fa 2
A k

N
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for the low~pass spectrum, and is less than % for other spectra,

The signal-to-noise performance index from Eq. (100) becomes

Rz(m)"[l+ﬁ%(m-2)2+ "’,%<m-2>2<m-h>2
-1/2
rET -2 m-bPm -6 L. (108)

Equation (108) is evaluated and plotted as a function of m in Fig. 6.
The optimum detector function from the standpoint of signal-to-noise ratio
is, of course, the square-law device, but the maximum is quite broad, as

can be seen in Fig. 6.

Another detector function is described in Eq. (309) and shown in
Flge Te

0 X E X 5K
y = (109)
L . elsevwhere
y
) 1 r
! |
' i
]
| ;
- ] x

Fig. 7 Detector Function with Dead Band

The following equations yield the results for the averaged function and

the averages for the higher order terms found in Eq. (101).
o 2
.....:7
y(x")=2[ e 5« 20 dx=1—P(-x?1) (110)
V2n o . .
=%

where P(% is defined as in Eq, (76). Also,
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If we let B = 2% s the performance index R1 from Eq. (95) for small,g

N
becomes ,
2 3
_ B for B <<l
1 B "%° V 2n
R1= et € ':( (112)
Ver 1-P@) |, ,
5 B figt. BI=24

W

The approximation for B > > 1 is obtained by using the asymptotic expansion
for 1 - P(B) found in Reference 7, p. VIII, Equation (112) is plotted in
Fig. 8.

Using the result in Eq, (111) with the general result for R2 in
Eq. (101), we have

2 2 o) -1/2
palasid il e le B, L2 1l P
: p ) p . (an) p
- (113)
¥ <<l

Equation (113) has been evaluated with the help of the tables in Reference 8
for six terms of the series. For large values of P the series converges
slowly., The results are shown in Fig. 9.

Figures 8 and 9 show that the performance of the detector with dead-

band compares favorably with that for the square law device in the region

where 1 <p <2 or 1< x2/MN<h.
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X. Conclusions

The investigation in Sections IV, V, and VI has shown that the selectiocn
of linear processors from a general field of odd-funciion processors is
optimum from the standpoint of both performance indices, It is assumed that
a square law detector is used in conjunction ﬁith the odd-function processors,

The evaluation of the performance indices in Section VI for specific
processors shows, however, that the array performance is not greatly
degraded for certain processor functions which deviate significantly from

the linear function. For the odd power law device,
R1 > .6 and R2 >,75 for 0<m<3

However, performance was degraded greatly with the infinite clipper with
dead band when the rms value of the signal plus noise was equal to or
greater than the dead band level of the processor., The examples indicate
that significant performance degradation occurs cnly when the processor has
dead space or zero output for a significant range of the input variable.

Thus the use of the infinite clipper (m = 0) as an array processor
does not cause significant degradation in performance, particularly in view
of the other advantages treated in part in Reference 3.

The investigation in Sections VII, VIII, and IX, which treats an array
with linear processors and a general even~function detector, has shown that
the square-law detector is optimum from the standpoint of output signal-to-
noise ratio., However, other detectors, particularly power law devices with
exponents greater than two, yleld greater signal detection indices than the
square iaw device, This is a distinct advantage since suppression of the

"off-target plateau" in the typical directivity pattern is a desirable result,
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As in the investigation with the processors, the optimality of the
square law device with respect to the signal-to-noise index is not

critical. For example

R2 > .75 for 0 <m<6

The results for the dead-band detector are interesting in that
performance comparable to or somewhat better than that for the square law
detector could be obtained if the dead-band level of the detector is

adjusted properly., For example

Ry =25 and R, =~ .93 if B =2

Further work might include investigation of arrays with multipliers
as detectors since suppression of the "off-target plateau" in the directivity
pattern is certainly desirable for small-signal detection., The inclusion
of non-zero correlation between noise inputs for different channels seems

necessary, since noise cross-correlation degrades performance in this respect,
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Appendix A

The terms summed over m in Eq. (22), will be considered a remainder term,

22 2.2
n (_) el agw (-) 29 oW
F(A)=wanmg[m e Tan- o0y e T . )

m=1 c D

For contour C, w = A + jv , and for contour D, w = = A + jv where - <v <o,

Rewriting Eq. (A-1) we have

A+ 3R 2 2 ~A-3R 2 2
= [n-1] (n-m) &5 (n-m) &5
F(a) = g (0) lim W € dw + w € dw | (A-2)
m=1 R0
A<3JR -0+ JR

Figure A-1 shows a closed rectangular contour defined by A and R.

The integrals in Eq, (A-2) are taken over the long sides of the rectangle.
v

Ll
=S

Ww-plane

N

-=fl”

Fig. A-1 Closed Rectangular Contour

Since the integral over the entire closed contour is zero by Cauchy'!s integral
theorem, Eq. (A-2) may be rewritten in terms of the integrals over the short

sides of the closed rectangular contour,
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A+ 3R 2 2 -8-3R

R—> o

= 22
R—o
From the above, F(A) = 0, as long as A is finite, since

-R
lim Rns = Q0

R~

AL=L3

= (m-1] (n-m) (a-m)] - 22
¥ g (0) un {(jm = (-3R) }e

[m-1] [ / (n-m) S5 / (n-m)
F(A) = g (0) lim w € dw + W )
[ {_ +jR

(2-3)



Appendix B

It is given that

ge) = fg[.n](e) f(e) de (B-1)
where -
2
-
f(e) = =2mm g 20 (B-2)
2n o
Integrating Eq. (B-1) once by parts, we have
: n-1] (n~1]
g™e) é (e) £e)| - ]g (e) £l(e) ce
~1 ) '
S [ g[n ](e> e ) ae (B-3)

In the same fashion, the right hand side of Eq, (B-3) may be integrated by

parts another (n - 1) times with the result found in Eq. (B-L).

(oo}

gd™e) = () / g(e) £ ) do (B-L)

-
(nem]  [m-1}
The product terms of the formg (e) f (e) always disappear because of

m-1]
the exponential nature of £ (e).

By definition: 5 5
| o 2%2— n = %
—=< e ® (S 8 GE) & (B-5)
a% n

where Hn(x) is the Hermite polynomial of order n, Applying the definition

in Eq. (B-5) to the probability density function in Eq, (B-2), we have
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£e) = (1" o™ (€] £(e) (B-6)

Combining Eqs. (B-6) and (B-L) we have

oo

gUﬂ(e) =.]rg(e) o Hn{%) f(e) de

=00

gM(e) = o™ Hn(%) gle) (B-7)

Given below is a table of the coefficients of the Hermite polynomials

up to order 10. Important recursion relations are also given.

X
10 9 8 7 6 5 L 3 2 ! 0 %} oy
)| 0
1 0 1
1 0 ) 2
1 0 -3 0 3
- 1 0| -6 0 3 L
o i 0l -10 o| 15 0 B
1 o| =15 0 Ls 0| -15 6
e 1 6§ w2l 0| 105 0 | -105 0 g
il 0 | -28 0{ 210 0 | =k20 0| 105 8
a0 e | o | s8] olae0| o sis| o || 9
T d 0 -L5 0 '6_3_0— o :350 0 LT?zs 0 | -9Ls | 1—0“

Table B-1 Coefficients for Hermite Polynomials
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dH_(x)
n’ (B-8)

Hn+l(x) - X Hn(x) -

(x) (B-9)

= X Hn(x) -nH o

From Table B-1, for example,

H7(x) -xl =21 x5 + 105 % - 105 x
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Sumnary

The detectability of signals consisting of Gaussian noise modulated by
a periodic function of time is considered in this report, It is assumed
that the modulation has a precisely known form, Detection is considered
in detail for four different examples, These are:

1, The spectrum of bovh the background noise and the unmodulated
signal is white (uniform); the receiving array consists of a
single hydrophone,

2, Same as (1) except that the receiving array consists of K
hydrophones,

3. The spectrum of the background noise is white, that of the
unmodulated signal drops off with the second power of frequency
above a certain point, The receiving array consists of K
hydrophones,

L. The spectrum of the background noise drops off with the second
power of frequency above a certain point, the unmodulated signal
spectrum is white, the receiver consists of a single hydrophone.,

In all of these cases the improvement in detectability is very modest, In
cases 1, 2, and L the ratio of detectability index of modulated to
unmodulated signal is 1 + % b2 s where b is the modulation index which is
less than unity, The results of case 3 are even less favorzsble, For
cases 1 and 2 the structure of the optimum detector has been obtained;

it turns out to have essentially the form that is used in practice,
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Ta Introduction

The signals that have Leen considered in most of the previous studies
of underwater detection were assumed to be samples of stationary gaussian

noise.1’2’3’u

However, in practice signals having a certain amount of
deterministic structure are occasionally observed. Utilization of this
determinisvic structure by the detection system should, in general, permit
greater detectability. In the present report the type of deterministic
structure that is considered is a low~frequency amplitude modulation of
the signal power, Such a modulation can be observed quite clearly in the

signal produced by a ship with a rotating propeller. The general

appearance of such a signal is shown in Fig. 1. The signal appears to be

—

Fig. 1 Amplitude Modulated Noise

a random noise whose power varies at the propeller frequency.

We assume in this analysis that the signal has a gaussian probability
distribution with zero mean, and that the variance is a sinusoidal function
of time whose amplitude, frequency and phase are known precisely. In practice
the modulation ié probably not exactly sinusoidal, and even if it were,
its amplitude, frequency and phase would be unknown a priori and would have
to be estimated from the signal. Thus the situation that-is analyzed is
considerably more favorable than the true situation, The analytical results
can, however, be considered as providing an upper limit on the attainable

detectability - an upper limit which cannot actually be reached in practice.
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II, Detection of Gaussian Signals in Gaussian Noise

The problem of detecting gaussian signals in gaussian noise has bYeen
studied extensively in the 1it-erature..s’6 The most complete results are
probably those cf Middleton.6 Middleton takes the point of view that the

received signal is given by
x(t) = y(t) + n(t) (1)

where y(t) is the signal at the "transmitter" and n(t) is the noise,
Although the received signal is usually observed continuously it is

convenient to assume that the signal is sampled. In this case Eq, (1)

becomes
x=y+n . )
here | x(t, )] ELN) n(t)]
x= | x(t,)1, 1A ’ mn
| x(b) | 1 (ty)] (n(t,)]

The samples do not have to be taken at successive time intervals; in

fact the idea of signal samples extends directly to the simultaneous observation

of several different signals, Thus, if signals received by an array of
K hydrophones are to be considered, the signal and noise vectors of Eq. (2)
would be of order n = mxK , where m 1s the number of time samples taken on
each of the K hydrophones,

In general the samples are not independent. Thus, if y is assumed to

be a gaussian variable, then the n-fold probability density function of y is
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i
(V—z-;{)n|£|1/2 * (3)

<

p(y)

where P is the covariance matrix of the transmitted signal samples; that is,

the 1j element of P is given by

|P| is the determinant of P and y is the transpose of y. OSimilarly the

n~fold probability density of the noise is given by

VH

' -1
) e 2 DS (1)
= (zm)Ple?

Hence if signal and noise are independent gaussian processes the probability

density function of the received signal x, given that there is a transmitted
signal, is

/y) 1 -3 x ()7 )
£ = ~ ¢

o

If there 1s no transmitted signal, the probability density of the received

signal is simply that of the noise, i.e.,

I
1 2==x =
£(x/0) = e (6)
&2 \f2n (det Q)*/°
Hence the likelihood ratio is
1/2
il -1 =T
£(x/y) det Q -5 x |[(B+Q)7-Q "X
Yx) = g = o AL ) (7)

f(x/0) det (P + Q)
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In the threshold detection case the signal-to-noise ratio is generally
very low, so that the elements of the P matrix are all very much smaller
than the corresponding elements of the Q matrix. In this case Eq, (7) can
be simplified as follows:

1/2 y/a
det Q

The coefficient = % 1 - (8)
det (P + Q) det[£+_gg_J

It can be shown (Middleton? Chapter 17) that for any arbitrary matrix A

and arbitrary scalar variable ¥

o
7 m+l Y m
det[l-kg_éJ: epo(-l) —ﬁ-‘trf._ (9)
=1
This expansion 1s valid so long as for the largest eigenvalue ).1 of A the

inequality )\,lX <1 holds, (The "tr" in Eq. (9) means "trace," the sum

of the diagonal elements of the matrix,)

Applying Eq. (9) to Eqs. (8) we set ¥= 1 and A = _Q__l. If the

£
-1

signal-to-noise ratic is small all eigenvalues of P Q ~ will be less than

unity, so that Eq, (9) is valid, Hence the coefficieat becomes:

d.de
det Q - tr (P QL
il m+1 -—
= &Ry =% 2_4 (-1) m
det (2 1 Q) m=1
i 2 @ -1.,2
= 'é' tI‘ _1_)_ Q + 'E tr(_P_ Q ) = ese
=g (10)
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The exponent in Eq. (7) may be expanded as follows:

-1
- %5'[@. + 9>'1—9'1}5 =-5x9™ [(z +B Q) - ;]5
wedgutropgts BtFe . - ]x

For small signal-to-noise ratio the higher-order terms become negligible
relative to the first term, However, instead of discarding all the high-
order terms completely, it is desirable to retain the second term

approximately by replacing it by its average value, where the average is

taken for signal absent, Thus

7 DR R ! z
§<§.9 PQPQ ?_‘E‘Ezzaijé‘ix;\' 'z'z %35 %;
i ] i @
1 -1 -
=5 tr (PQ™) (12)
where a, ; is the ij element, of gf;g Q-¥§ Q-ln
Combining Eqs. (10), (11), and (12) with Eq. (7) yields then the
results
LI - = &
£(x) = exp %z@.lzgls-%trzgl—ll;“<29_1>2+---} (13)

In the standard likelihood-ratio test the likelihood ratio is compared
to a threshold K; if the threshold is exceeded it is decided that a signal
is present, Hence the conditional false alarm probability a is the
probability that £(x) > K if in fact no signal is presenty the conditional
miss probability B is the probability that £(x) < K if a signal is, in

fact, present, It is usually more convenient to consider the log £¢(x); thus:
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o log K
a = [ p,(u) du s p = [ py(u) du (1k)
log K 00

where u = log #x), po(u) and pl(u) are the probability densities of the
log of the likelihood ratio for signal absent and for signal present,
respectively.,

For small signal-to-noise ratio, po(u) and pl(u) corresponding to the
likelihood ratio of Eq, (13) will be approximately gaussian as a result of
the central limit theorem, In this case po(u) and pl(u) are completely

determined by the mean and variance of log ¢(x). From Eq. (13)

2
Caog 8<z>§=%<c'9‘29‘1%-%tr29‘1-%;tr ™)
Uy ol reel A1 ] L
=strQPQQ-5tr QT - tr (RQT)
1 e
= -ptr (RQ7) (15)

»—}\/'0/

<[1og £(x )]

-éog £(x) . =

(16)
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Similarly

log 4(x) (B0 )2 (17)
Qog @)) =

vog o(w)] ) - Qog 2w = Eer 2 g (18)
S+N S+N e

Thus pOCu) and pl(u) are gaussian distributions having the same variance,
and their means are symmetrically located from the origin by a distance

a2
ftr Q™). Substitution into Eq. (Lh) then yields

a
1 -@(-]ﬁ\jtr et * %SE_K_T) (19)
p or (2Q7) ]

where

22| ot
‘®(> \/;j

It is clear by inspection of this equation (for instance with K = 1) that
a and B both decrease as tr (_I:g_l)2 increases; thus tr (P 2_1)2 can be
considered the figure of merit of the detection system,

It is alsco interesting to note that the "output signal-to-noise ratio"

may be defined by

L [l

.—.9- =3 =—tr(E_Q_)

N, <[1og 8(3_()]2 = <1°g 3(5)>; 2

2
Thus % b (B g'l) can be identified with a performance index via a

suitable definition of signal-to-noise ratio. This index is computed for

a number of specific examples in the following section.
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III, Detection of Amplitude-Modulated Noise Signals

An amplitude-modulated nolse signal of the type pictured in Fig. 1
can be written in the form:

y(t) = £(t) =2(t) (1)

where f(t) is a deterministic modulating function and z(t) is a stationary

random noise function. Then the general element of the P matrix is

= £(ty) £(v,) <z(ti) z(tj)>= £(6) £(b,) B (4 = t,)
(22)
where Rz(ti - tj) is the autocorrelation function of the stationary
noise z(t),

Case 1l: Single Hydrophone, Uniform Spectra for Signal and Noise

If the noise is white and statlonary, the Q matrix is a diagonal

matrix and can be written in the form

Q=NI (23)

where I is the unit matrix,

Also, if the signal spectrum is uniform, and if one considers only

one hydrophone, then
R (b, - tj) = 8 6y (2k)

where S is the signal power in the unmodulated signal and 613 is the

Kroneker delta; &,, = 1, 513 =0, i # jo Then the P matrix is diagonal,

and its general element is

Py =8 i‘a(ti) (25)
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2
The matrix (P Q"l) is then clearly also diagonal, and its general element is

2

-1 S° ob
PQ - £5(s 26
‘ le g >2]iJ % £(8) , (26)

go that
e 82{3‘ L

tr (2Q7) =" 3 ) £(t) (27)

L]

To perform the summation a particular modulating function must be assumed,
In order to provide a fair comparison between detection of modulated and
unmodulated signals, the modulating function should be such that the average

noise power is the same with modulation as without. Hence let
fz(t)=1+bcos wt (28)

The modulating frequency is assumed to be relatively low so that

m(ti+1 - ti) < <1, Ecquation (27) becomes

12 Sc 2
tr (B Q )-—gz (1 + b cos at,)
i
2 T
S 2
& —3 (1 + bcos wt)” dt
AN
0]
where A is the time interval between samples; i.e., 8 = ti+1 -t
2 2 2 2 2
tr Q) & Bs (15 =n§-2-(1+92—) (29)
AN N

if the observation interval T = nA lasts for a large number of cycles of

the modulating function, so that o > >1,
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If there were no modulation, b = O, Thus the ratio of detectability

=l .2 :
index, tr(P Q l) , of modulated to unmodulated signal is

L = (30)

S5ince b cannot be greater than one, it is sc¢en that the imﬁrovemcnt in
detectability is rather minor,

This result would appsar to vioiate intuitive concepts,since practical
experience with signals of the Turm shown in Fig, 1 indicates them to be
much easler to detect in a noise background than steady noise cignals.
However, this is true only if the signal-to-noise ratio is quite large.

For the threshold situation cocnsidered here, where the signal-to-noise
ratio is much less than unity, the result given in Eq. (30} will also
properly describe the practical. detectability.

The Optimam Detector

The optimum detector is a likelihood-ratio detector; i.e., it performs
the operations described by Eq. (13), The only term of that equation
containing the signal is the first term % E}Qflg Qf¥§ ; the cther terms
are constants, For the white-noise, white~signal-spectrum, single-

hydrcphone case considercd herc

n
2
Uas - S
%.5 Q 12 Q7 x L % -E E: (1 + b ces mti) [x(ti)]
i=] .
T
S b £) x2(t) dat (31)
:Fl; (1 + cos whb) X ) at (3
&

0
Thus the optimum detector squares the signal, multiplies it by the modulating
function and then integratas the result, This is shown diagrammatically

in Fig. 2,
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Fig, 2 Optimum Detector

The part of the detector shown inside the dashed box can be
implemented by a linear filter matched to the modulation envelope.5 Thus
the optimum filter has essentially the form that one would use intuitively

on a signal of the form shown in Fig, 1.

Case 2: Uniform Signal and Noise Spectra, Hydrophone Array

Here we assume that there are K hydrophones in a three-dimensional
isotropic noise background., For such a background Faran and Hills7 have
shown that the cross-correlation function for noise picked up at elements

separated a distance d = CTy » where ¢ 1s the velocity of sound, is
T 4T
s

R(7,T ) = = R'(x') gt (32)
27T

S.."L'+"C
]

1
where R (t) is the autocorrelation function of the noise at any one

hydrophone,
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For white noise

B () & 5w (33)
W

where N is the noise power and W the band width.

Hence
T +%
s
) '
R(t,7g) = 6(t ) dT
L
St 4T
]
p
- i for Sty <T <'rs
de
S
L for ’rn'ts or 'r=-‘r8
8wt
s
0 otherwise
\
(34)
If white noise of infinite bandwidth but finite power is assumed, W-o
so that R(7,7 ) = 0 for all T # 0. However
R(0,0) = N. (35)
Thus Q is a diagonal matrix of order m = K,
The elements of the P matrix are computed under the assumption that
the array is steered "on target," since this gives maximum detectability,
Under these conditions the general element is
P,.= S f2(t ) for |1 - | = m,2m,3m...Km
ij i , ’ LI N )
= 0 otherwise (36)

where m is the number of observations and K the number of hydrophone elements,

2
Hence the diagonal elements of the matrix (P Q'l) are
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2 5 4
Q) -K—z-f(ti) for 1si<m
Gkl N
d s L
= K =5 f (ti m) for mtl < 1 < 2m
N &
52 L i
= K = £7(6y o) for 2ml < 1 <2nm
s? L
= K "'2‘ f (ti“(x-l)lﬂ) for (K—l)m*l <1 g Knm

N

Therefore

22 22< 4
tr (P Q) =K -521‘(1:1) (37)
N° ¢
j=1

If we again let fz(ti) =1+ b cos ami and replace the summation by an

integration, we obtain

T
2 2
tr (P Q) =K2§-2-f(l+bcoswb)dt
N
0
2 2 2 2
N 2 N 2

2
Thus the ratio of detectability index, tr (P g"l) , of modulated to

unmodulated signal is as before

rs=

2
1+ 92—) (39)

Also it is clear that the optimum detector would consist of a filter of the
type shown in Fig. 2 attached to each hydrophone, with the outputs of all

the detectors summed to give the totai output.
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Case 3: Markov-Type Signa) Spectrum in White Noise

In this case the power spectrum of the unmodulated signal is

2aS
Bglel = sy

a” + W,

where S is the signal power. The corresponding autocorrelation function is
-a|T|
RZ(T) =Se (L)
For the moment consider only a single hydrophone, Then, with modulation on

the signal the general element of the P matrix is given by:

P,, =5 £(t,) £(t.) e-alt’ftjl
i3 i J
ji-ji
=5 f(ti)f(‘bj)p (L)
where p = e 2 e and where A is the time interval between
samples as before, klso
Q=N1I
as before, Thus the matrix P Q™' is equal to
.2 2 3 n=l, o
fl pf1f2 P f1f3 P flle e o 0o P flfn
of,f £,2 of . f 0%f, £
2“3 2 273 Ty e
2p £ pf.f,  £.2 BT L
i | g 3 3L
=
PR = 5 y
n-1 2
-p fnfl ° . ) fn

where f1 is shorthand for f(ti).
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Then fzifz 2(i-1) X X X -
1 i P
=
(G 22(21) O, 2 2(32)
2| 2 2(2-4 - —
X f2| fip +Zfip X X
[;al 1=3 |
1,2 g2
9™ =12 O 2204) 9. 22(3)
4 gl
X I DA DA
i=1 i=l

where only the diagonal terms have been worked out in detail, Thus we

obtain
af g {l 2 g% 2 2(3i) .20 . 22(1-3)
@) =3 ) et ) 6 ERDYEAC
=1 i=1 i=5+1
4§ " 8 T
;:;ﬁ%%#rfz(s) ds’/’fz(t) p2(e-t)y i}(fz(t) p2(b-8)yy
o | O s.
- 4 B: T
- E%E?/’fz(s) dspjffz(t) e £2(t) e
3 o ° (2)
We again assume that fz(t) =1 + b cos wt, The integrations involve
considerable algebra, but sre otherwise straightforward., If all high-~
frequency terms are ignored - i.e., if we assume as before that ol >>1
the result is
wegﬁzg%b+%ﬁ%d (13)
A a @ + La
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arnd therefore, the detectability index ralio of modulated to unmodulated
signal becomes in this case

r=1+

1o (kL)
+

W

La

This result is actually less favorable than the one for a white signal
spactrum, which it approaches for a-—>® or for ®w—0 ; in other words,
if the modulating frequency is much less than the width of the signal
spectrum,

This result extends directly to the multiple array case. As was shown
under Case 2, the Q matrix is still diagonal, and if the array is steered on
target the P matrix is a K x K array of m x m identical submatrices of the

type considered above for one hydrophone, Thus we obtaln directly for an

array of K elements that

2 2 2,2
- 2
tr (2Q7) =K 351+ 222 (L5)
N A a w + la
The detectability index ratio is then again given by Eq. (LL).

Case L: Uniform Signal Spectrum, Markov-Type Noise Spectrum, Single
Hydrophone

This is the only remaining case for which results can be easily

obtained, The P matrix is diagonal and has the form

{ro
/]

S 2 (L6)
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The Q matrix is

2
1 p »p
o] 1 (o]
2
Q = N|P P 1
N T
R
where p = e as before,

P P o0

pn-l T

}¢ Q)
cos P

3

N~
ese P

se 1

The inversion of the Q matrix is fairly easily accomplished; the

result is
R
N1 -p
Hence —
£ L )
ils
- 2 S2
[po] = cumllensy
N1 -p7)

N,

)

2
£, 5
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2
p2 + fzh(l & p2) -

2,22
-f3 f2 p 3

e
*

2 2
+ £.°(1 + p7) - f3'fh p

(L7)
(48)
-p
l_J
3
2.2
f3 p

3 2.2




where the off-diagonal terms are not shown. Finally, we obtain

o > n-1 n-l
tr(f_g'l)-—-—s-—-—vz +fb yfh(l+p)-p2>:f
Nz(l - 92) i=1
3 2
D
s [OF Z 'fizfi_l (50)
i=2

This result may be simplified by using

2
2 2 9 2 19 2, ,2
f- - f + — (f )A + o — (f ) A + cos
i+l i 3t i 2 at2 3
2 2 1 82 2
fil "fi -"-"'(f )A"',-""ﬂz J- )A - agee
- at ot
Then
2 2 b 2
= 2 2
tr(ﬁ_Q_ 1) = __S.____é. a + ph)z‘ , +p A2 z fi §_.2. (fi )
N2(1 - p%) =1 =

—

L L2 2 2 23 2 23 2
—(f1 0 )p(1+p)+pA[fn g(fn)»f1 ;—;(fl )}

(51)
For large n, and as A becomes very smell, the cnly significant term in this

expression is the first summation; thus

tr (P Q”t ﬂl—“ﬁ—fz f (52)

N(l-p) i=1
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For f12 =1 + b cos wb, this result is identical with that obtained

for case 1, Eq. (27), except for the coefficient multiplying the

summation, Thus for T = nA very large so that «T > >1 , we find here

that
A e B2
E R = £ s nll+ 7?) (53)

2 2
N1 -p")
The ratio of detectability indices of modulated to unmodulated signal is,

as for case 1,

r=1+-é- (sk)

v, General Conclusions

The four examples of the effect of modulation on the detectability of
a noise-like signal represent the simplest cases for which results could
easily be obtained, Other examples, such as a Markov signal in a Markov
noise, etc,, cculd also be considered. The computational complexity begins,
however, to grow very rapidly, especially when hydrophone arrays are
considered, and it is unlikely that the results would turn ocut to be
qualitatively much different from those that have been obtained in the
simpler examples. All these examples show that the improvement in
detectability resulting from modulation of the signal is quite small, with
the maximum increase of detectability index being no more than 50 %. This
value is obtained if the modulation index b is unity and if the modulating
frequency is very much lower than the bandwidith of the signal spectrum,
Also implied in all the computations is that the form of the modulation
envelope be known precisely; this would not normally be true, Thus the
modest improvement in detectability that has been computed is actually a very
optimistic estimate, and the improvement that could be obtained in practice
would be considerably smaller,
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If the background noise is white, the results extend directly to
multi-element arrays. The case for non-white background noise in a
multi-element array has not been completely analyzed, but it is doubtful
that it would turn out to be radically different from the cases that have
been con;idered in detail.

Qualitatively, the reason for the poor results that are obtainable
is that in spite of the ccherent modulation the detection is basically
incoherent. This means that the detector is sensitive only to the power
in the signal and cannot take into account detailed signal structure, The
effect of the amplitude modulation is simply to increase the signal-to-
noise ratio above the average at certain times and to decrease it at other
times, The detector can take advantage of this by increasing its gain when
the signal~to-noise ratio is high, and by decreasing it when it is low,
However, even if full advantage is taken of the power fluctuation, the
detection cannot actually be as good as that which would be obtainable on
an unmodulated signal having a constant signal-to-noise ratio equal to the
maximum occurring during the modulation cycle. Thus, since the modulation
peak cannot excead the average value, the maximum improvement in
detectability camnot exceed a factor of 2; for sinusoidal modulation it
turns out to be a factor of 1.5,

In view of the foregoing discussion iV seems clear that major
improvements in signezl detectability can only be obtained by some form
of coherent detection, This would require that the detailed structure
of the signal btes taken into account, There is some indication that
coherent wave patterns resulting from machinery noises, banging of
snorkel tubes, etc,, might be found at the low end of the signal spectrum,
A suggested avenue for further study is, therefore, the investigation of

these lower-frequency coherent signals,
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List of Symbols

A = any matrix

aij = ’general matrix element

a = break frequency of first-order Markov spectrum

b = modulation index .

¢ = velocity of sound in water

f(ti) = fi = modulating function

f(x/y) = conditional probability density of x given y
Gz(m) = power spectrum of unmodulated signal

K = number of hydrophones

K = 1likelihood-ratio threshold

2{x) = likelinood ratio

m = number of time camples

n = total number of samplcs
n(t) = noise signal

n = noise sample vector

N = noilse power

P = signal covariance matrix
Pij = general element of P

p(y) = probability density of y

Q = noise covariance matrix

q(u) = noise probability density

Rz(r) = autocorrelation function of unmodulated signal

r = ratio of detectability indices

S = signal power
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T = 1length of observation time

W = noise bandwidth

x(t) = received signal
y(t) = transmitted signal
z(t) = unmodulated transmitted signal

X = received signal sample vector

¥y = transmitted signal sample vector

A = time interval betwecn 3uccessive samples
T. = time difference between hydrophones

©w = fregquency

det A = determinant of g

< > = conditional averaging operation - noise culy pressib
N

< > = conditional averaging operation -~ signal and nolise present
S+N

tr A = trace of A = sum of diagonal elements of 4

!
X = transpose of x
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T, Introduction

The object of this investigation 1s to obtain a realistic estimate of
the cost in target detectability of clipping the outputs from an array of
hydrophones prior to data processing. The problem is approéched by considexing
the performance of likelihood ratio detectors operating on clipped and on
unclipped data. Likelihood ratio detectoirs are chosen because they are known
to be optimal under reasorably gererai conditions, Data processing is
presumably accomplished by digital. meanc so that the hydrophone outputs must
be sampled,

Results have been obtained only under the foilowing assumptions:

(1) Signal and noise are both stationary Gaussian processes,

(2) Signal and noise spectra are flat over a frequency band 0 s f s W
cps and vanish for f >V,

(3) The noise disturbances received at different hydrophones are
uncorrelated (hence, because of (1), statistically independent ).

(L) The signal to noise ratio at each hydrophone is small,

(5) The array of hydrophones is steered on target,

(6) The sampling period is %% seconds for the clippea as well as the
unclipped system.

The second of these assumptions is probably the least realistic. It
could, in principle, be relaxed, but cnly at the expensé of greatly increased
computational complexity, At the present time it does not appear that the
additional incight thus gained would Jjustity the effort,

If assumption (2) is satisfied, the disturbance (signal plus noise)
received by each hydrophone is completely characterized bty a series of

samples taken at intervals of %% seconds, The continuwous signal can be
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reconstructed without error from the samples so that use of the sampies in
place of the continuous signal involves no loss of information. Furthermore,
assumption (1) in conjunction with (2) insures that the samples are
statistically independent.

If the samples are clipped they remzin statistically independent, for
functions of independent random variables ere independent, random variables.,
It is therefore only necessary to consider the detection problem for a single
sample from each hydrophone, Extension to the 2TW samples that will be taken
in T seconds is a trivial matter,

In evaluating the resuvlts of the present analysis it is necessary to
keep in mind that the optimal procescor in each case is presented with
sampled data. In the unclipped system this represents no loss of information
for the reasons indicated above, The c¢lipping operation, on the other hand,
changes the original spectrum defined in {2) to one thet does not vanish
beyond any finite frequemcy., Sampling at intervals of é% geconds (or at any
other finite rate) therefore may involve scme loss of information., Hence,
if one does not regard the sampling at intervals of é% cseconds as a fixed
constraint, the performance of the clipped system might be improved., The
price for such improvement is basically the requirement of greater bandwidth
(or sampling frequency) in the data processing system.

J800 The Likelihood Ratio Detector

The instantaneous value of the likelihood ratio is the quantity AL

&w/s))
s S
P(/0)

defined by

)
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P(V/S) is the conditional probability that the sample set received by the

M hydrophones assumes the value V when the signal component is known to

have the value S, V and S are M-dimensional random variables (VI,VZ,OOJVM)
and (Sl,,Sz,o..SM) respectively, The notation < >S indicates an averaging

operation with respect to the probabillty distribution of the signal,
P(V/0) is the conditional probability that the received sample set assumes
the valus V when signal is known to be absent,

The likelihood ratio detector operates by deciding "signal present"
o /\ exceeds a certain threshold valve and %signal not present" if /\
falls below the threshold. A measure of performence can therefore be
obtained by comparing the change in the average value of /\ brought about
by the appearance of a signal with the typical fluctuation about the average
value., Under assumption (4) the fluctuation is almost entirely due to the

noise and one therefore arrives at the following figure of merit,

R AES/\Z (2)
D(A)

A E(/\) is the change in the expectation (mean) of /\. due to the signal
and D(/\) is the standard deviation of /\ in the absence of signal,

The quantity R will now be computed for both the elipped and the

unclipped instrumentation,

III. Clipped Data

If the hydrophone outputs are clipped and there is no signal, all

possible combinations of (Vl,...VM) have the same probability. Hence

p(v/0) = 2™ (3)
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Thus the denominator of /\ is a constant independent of V, Now
P(vl=tl, V2=tl’¢°° VMstl) 8
© (L1+°)2 (xzi's)2 (xM$3)2
% fd.xl fd.cMe e N . (L)
(2111\I)M/2 o

where N is the average noise power at each hydrophone and use has been made

of assumption (5), which implies that Sl 2 B o0 M SM = 8, The clipping
levels have been written as £ 1, obviously without ioss of generality,

Using the Gaussian property of the signal, the numerator of /\ can be

written in the following form:

92 (JL.L::8 ) i (XM;S ) ;

L __‘fdxl."jdxmfdse-'ige- e e..e“
(2n0 W 22 S - )

/
5 is the average power of the signal whose mean value 1s taken as zero,
The integrations in the various X, &re all identical and can be carried out

separately, With the change of variable

=y (6)
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one obteins

o (x, +s) ©

2
i o
f g o o [e -
Vr

u.];i 1 B g i )3 1 (1)
e VHiVer e J

Thus Eq. (5) becomes

<P(V = % 1, V2 = X l’eoo VM Al B 1) =
S
) 3 EE - 3 K 3 MK
G dse |V, = _1fs) \E_-E__-.;(i_
NES 2 "\ 3y 2 "\an c\Wan

K is the number of hydrophones having positive outputs. Under the stated
assumption it is clearly immaterial which of the hydrophones have positive

outputs,

Expanding the two bracketed expressions in the integrand of Eq. (8)

2
g
v

according to the Binomial law and retaining only terms up to the power

one ob'oains&1

v, =1, 7, = tl,.oovmvil)%

= o]

-M/ZJ/’ds e— 23
ES 3

lrerms in higher powers of —g: are ignored because of assumption (4),
2N

M-2 o

i
2N

yéf)“ S K(K=1) + (M-K)(K-1)
2

- K(M-K )

~

!\'.’)—5



WM, _l_; [K(K-l) + ;M-K)(M-K-I) - K(M_K)] _2% 9)

Thus from Eqs. (3) and (9)

/\_u 1 + ?_ K(K"l) + (M-K)(M—K-l) - K(M-K) _5_ (10)
n 2 N
In the absence of signal the probability that K hydrophones have positive

outputs is simply grit Mn-KMé Xj ° In the presence of signal the probability

is
e 1 'EM!-K ;J K: {1 n ) 2( ( - K(M‘ K) N

\

Hence the quantity A E(/\) introduced in Eq. (2) is given by

\

Mo
pzn) =Y dae g [K(K-—l) + 2(M-K)(M-K-1) i K(M_K)} _g_ )
K=0

oM M3 2 [K(K-l) + (M-K)(M-K-1) _ K(M_K)j‘l %

(M-K)J kI T 2
M
. 2-M Z Ml 2 [K(K-l) +_(M-K)(M-K-1) " K(M“K;J ._'S:.
= (MK)3 K4 | " 2 "
2
+ __15 [K(K-l) + gM-K)(M-'K-l) - K(M_K)] (_v;_) (11)
n

The K sum can be evaluated without great difficulty if one recognizes [by
inspection of the binomial expansion for (1 + I)M] that

M

z' MM (12)
koo (M-K) KI

AH-6



Consider first the coefficient of —S- in Eq. (11)

N
M -
SUST M| K(R1) ¢ (UKL K(M_K)j
ko (M-K)& K! 2
M M M~2 M-1
M2 Z . +z R S QZ
2 o (M-K)! (K-2)i = (M-K-2)! KI (M—K-l)J (K-1)¢
\ J ~— s AN w4
® ® ©
(13)
The three sums will be evaluated separately. In sum Ci)t e change
of variable K-2 = j 1leads to
2M-2
@ - E: = by Eq. (12) (1k)
(M-2- j)’ 3 (M-2)i
Again using Eq. (12)
M-2
2
@ - z L as)
(M-2-K )¢ K! (M=2)
Finally the change of variable ¥-1 = j and use of Eq, (12) converts
sum @to the form
M~2
M-2
$ 1 2
@ = 2—/ B PR = (16)

pare M-2-3)¢ 34 (M-2)}

Thus expression (13) vanishes.
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-g— in Eqe (11)

Next consider the coefficient of

M 2
2-MZ [K (k-1) + (M-K)(M-K-1) _ K (K )] Md
2 (M-K )3 K¢

K=0
2

M
g™ 1(P€-Mﬂ(+hx2-m) M
KZ:O .E (M"‘K )0' K(!

. M}

M

M

0
(
- p- (2 )MJ4M2(M-1')? z —1 . M) Z
. L ka0 (M-K)d Ki (M-K-l)! (K-1)4

® ©
M-1. }
+ 16 Z K (M-K) 17)
(M-K-1 )3 (K-—l)J[
©®

Sums @ and @ can be written down immediately from inspection of Egs, (12)

and (16) respectively:

~n
=

(18)

@) -

=

SM-2
(19)

G =

(14-2 )3

Sum @ requires some further manipulation:

©® - z f(K-1) + 1) [(M-K-1) + 1]
(M-K-1)! (K-1)!

K=1
M-2 M1

T L v (r1) g
oo (M-K-2)} (K-2)! (M.x_l), (K-1)!
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M-l M-1 :
a z —.._._1____._... 4 (M—l) 1 (20>
yo0 (M-L-3)3 3¢ oy (M-K-1)1 (K-1)3

where j & K-2,

Now from Eqs., (12) and (16)

_ oli=ls . (1) oM-2 "
(M=l ) (M-2)¢
Finally, combining Eqs. (17), (18), (19) and (21)
Mo -2
2-M7' F{K-l) b (EK)(MED) gy )} MJ
= 2 (M-K)! KZ
-1 W1 )? - 3o a )+ § MOL)(M-2 )(8-3) + M(-1 3
D) |- e ¢ 02 3) + )
= 3 H(M-1) (22)
Hence, substituting into Eq. (11):
2
AE(/\)n—%—M(M-l)(-‘g-) (23)
n

S
The reader will note that Eq, (23) does not contain terms of the order ir 5

The question therefore arises whether an error was not introduced when

4

o]

V/oN

terms of the order were discarded in Eq. (9), for terms of this form

S 2

Y after integration over the signal

would yleld contributions of order

distritution., It is a straightforward though tedious matter to demonstrate

.

2
that the added terms of order TT) cancel so that no error arises, The

details of this demonstration are carried out in the Appendix,
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The next step is the computation of D(/\)

5
D(A) = \/E(/\?) - [E (V)] (2ly)

both means being computed in the absence of signal,

From Eq. (10) and the vanishing of (13) it is immediately apparent that

E(/\)~1 (25)

Thus only E(/\?) remains to be computed.
2

M I~ /
B(A\2) = 27X Z L_ . % [K(K-l) + (M-E)(M-K-1) K(M_K)} _%_ M}
K=0

2 (M-K)$ K4
(26)

<0 ¢
By Eq. (12) the term in {ﬁ%‘ is unity. The tern in %% is identical in
I 2
form with Eq, (13) and therefore vanishes. The term in is identical

—

N
with the corresponding term in Eq, (11) so that Eq, (26) can te evaluated

by inspection of previous results,

2
e —2,2 M(M-1) (—‘g—) (27)
n
—
Hence p(/\) =V-n_2:\/M(M-.1) = (28)

Again it is necessary to show that no error is introduced by omission of

-~ | in Eq. (9)e This demonstration is carried ocut

the terms of order( ade

in the Appendix,

The figure of merit for a single sample from each of the M hydrophones

can now be written down by use of Egs. (2), (23) and (28):

By -V—;?- VM@-1) IET (29)

Rcl stands for the single sample figure of merdt in the clipped case,
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The generalization to the group of 2TWM samples observed in time T
follows immedlately because of the independence of samples resulting from
assumptions (1) and (2). If the figure of merit obtainable by processing

clipped samples for T seconds is designated as Rc’ one obtains

R =VTW % VM) % (30)

IV. Unclipped Data

The likelihood ratio detector for operation on unclipped data has
been analyzed in Report No. 3., As pointed out previously, no information
is lost through sampling under the assumptions of the present analysis.
Hence the results of Report No. 3 can be used without modification.
Because of assumption (3) the array gain is simply M. Therefore Eq. (30)

of Report Nec. 3 reduces to the simple form

27W
:; . o
A(DC_output) - R o= L 2 da = v:l,‘w“M_Q_ (31)
u n N N
D (output )
0

H.u is the figure of merit for the likelihood ratio detector designed to
operate on unclipped data,
By comparing Eqs, (30) and (31), one obtains the desired value for

"decrease in detectability" or "“cost of clipping”

R
u M

The performance ratio given by Eq. (32) is evidently close to % for all
but very small values of M. The fact that Rc/Ru =0 forM=1 1is due

to the definition of "useful output" adopted in the analysis, The quantity

de=l,



A E(/\) is the change in the average value of /\ when a target appears

that was not previously present, It is not the difference between the
average values of /\ on and off target. Thus a single hydrophone operating
on unclipped data is capable of detecting the appearance of a target by
notirg an increase in received power, A single hydrophone operating on

clipped data obviously has no such capabllity.

Vs Conclusi.on

The figure of approximately'% for the "cost of clipping" defihed by
Eq. (32) is not unexpected, It was shown in Report No. 3 that the
likelihood ratio detector designed for operation on unclipped data is
identical in performance with a standard power detector if signal and
noise have the properties assumed in the present, analysis. It caii be
shown alsc (see e.g. Report No. L) ﬁhat a standard power detector operating
on clipped data derived from an input whose spectral properties satisfy
assumption (2) on page 1, has a figure of merit lower than that of a
detector operating on unclipped data by a factor of approximately %.
What has been demonstrated here is that this degradation must be regarded
as an inherent cost of sampling and clipping. No detector cperating on
clipped samples could exhibit less degradation in performance, On the
other hand, a detector operating on a clipped continuous signal (or a
signal sampled at a rate above 2W samples per second) might perform somewhat
better (see comment in section I). Since any possible improvement is
certainly limited to a factor of aboutl D and the analysis of the continuous

2
case 18 not simple, no attempt has been made to date to carry it out,
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Appendix

In Eq. (10) /\_ is represented by the first two terms of a power cericc

in —’I% . Since & E(A) [Eqs, Gk (23)] has a lowest order term

/
2 :
proportional to -‘I%-) it becomss necessary. to investigate whether the

/
)

N
Returning to Eq. (8) and carrying terms up to order

omission of terms of order

in Eq. (10) causes any error in Eq. (23).

g
7

one cbtains

an expression of the form

= '.'.'. xS = t
<P(v1 1, vz :L 1—, e e VM 1%

® 52
-M - K - M-K

___._fdsezb 1+(as+a53)] l.l-(as+as3)] (A-1)

‘ 3 L 3

Ven§
=00
where 815 a4 are numerical constants,
Expanding the bracketed expressions as binomials:
<%(V1’= x lsivz = 2 1,;.a\%4= 4 ljg
oo
3 K¢ 3 .
1 + K{a.s8 + a,5” ) + =~ (3.5 + a.5”)
L e
-0
K! 5is? K 3 3
+ m——— (als + ags ) A ——— (als + age ) 1= (M-K)(als + ags )
(,-3)¢ 3! (K-L )i L2
3
-LMZEQL——- (a s + a.s ) -—SM:Kl—-—- (a s + a353)
(M-K-2)! 21 (M~K-3)! 3!
N

__Sl":ﬁl__._(as»,as% (A-2)
(M-K-k )8 L}
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Only terms of order s~ in the integrand are of interest for the present

purposes, These are

= ~K) aja, + QK al ~ 2K(M~K) 3,2,
Vin (M-X=2)! T+ 3 (u-K-L)J L

_ _k@-K)! a L R K (l6=K)? = i R ¢ SN

(M-K-3)! 3! s (K-2)8 (M-K-2)i L - (K-2 )4 13

KL (MeK) b K§ l:}
®3)1 31 L (el Y

f[l 2 X

=M o2 J
3,5 K& (M-X)] - + a
( (M-K-2 )4 K¢ (K-1)! (M-K-1)I (M-K)§ (K-2)! 1%

p { I _ i . 1
(M-K-L)! K& L2 (K1) (M-K-3)3 3¢ (K-2)§ (M-K-2)%! L

. 1 " 1 } alh (A-3)
(M-K~-1)3 (K-3)! 31  (K-b)! (M-K)I L

It is apparent from Eq, (11) that the contribution of the above term to

3 2 i
[ + } a8,

K=OIL(M'K“2)* K? (K-l)l (M-K-1)! (M-K)! (K-2)!

tE(/\) 1s simply

" | i - o p i
[(M—K-h)! K& W (K-1)! (M-K-3)2 3) (K-2)! (M-K-2) L

- : ‘ : a,® (A~
(M-K-1)¢ (K-3)! 32  (K-L)I (M-K)! L&

Where factorials of negative numbers appear in this expression, the term in

question is to be interpreted as zero,

1‘\ f,)- ] l;



It is immediately apparent from Eqs. (13) to (16) that the coefficient

of ala3 vanishes, The coefficlent of alh can be rewritten in the form

M=l M-4 M-4

2 E: -2 1 3 §ﬂ 1

M-K-h)z K L oo (M=K-L)! K 38— (M-K-L)I KI L

M-4

-(%- +%)(;m:

Wi

=10 (A-5)

Thus A E(/\.) is unchanged by inclusion of the higher order terms,

Furthermore, it is clear from Eq. (26) that the additional term of order

s

—ﬁ-) in E(/\. ) is proportional to Eq. (A-lL). Hence there is no change
in E(\?),
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I. Introduction

An important class of sonar targets has the following two
characteristics:

1) The signal emitted by the target contains periodic components
in a low frequency band 0 s f S-Wi + The frequency of these periodic
components is not known & priori,

2) The high frequency portion of the signal emitted by the
target (Wl < f < 'W2) has essentially the properties of white
Gaussian noise amplitude modulated by the same low frequency periodic
component.,

Since the ratio of total signal power to total noise power at the
receiving array is likely to be low, the question arises whether these
special properties of the signal can be used to improve target
detectability,

Utilization of the period}c property of the low frequency signal
is theoretically attractive but encounters the practical difficulty that
self-noise at the receiving array also has periodic components in the
same general frequency range. In the absence of a priori knowledge
concerning the frequency of the periodic target signal it would be
necessary to monitor continuously the periodic components of self noise.,

A second possible procedure deals only with the high frequency band
Wl < f =< W2 and attempts to improve detectability by using the fact
that the signal is amplitude modulated by the same low frequency periodic
component, This possibility was investigated in Progress Report No, 5,
which showed that the best possible detector of this type could in

general provide only small improvements over a standard power detector,

A7=1



The present report investigates a scheme that attempts to use the
periodic low frequency signal component without requiring kncwledge of its
frequency or monitoring of the self noise, This is accomplishe@ by
demodulating tHe signal in the high frequency range and employing the
detected modulation envelope as a "local oscillator" which can then be
cross-correlated with the low frequency component of the signal, The
difficulty with this procedure is, of course, that the "local osciilator"
signal is extremely noisy.

II, Problem Statement and Assumptione

A block diagram of the proposed instrumentation is shown in Fig. 1.

L,P,
transducer filter

output <°’W1) W(t) = nl(t)+Alcos 2nflP+Azcos 2nf2§

o e e e

Av,

maltiplier :

Wt )z (6] O¥)

x(t) = nz(t)+s(t)[1+a cos 2nflf] S‘Z y(t)=x2(t)||z(t

squérer “

block D.C.
Figure 1 Cross-Correlation Detector

The output from the transducer array is split into two parts. The low

frequency portion (0 < f 5:W1) is given by

W(t) = nl(t) + Alcos 2nf b + Ajcos 2nfyt

nl(t) has the properties of Gaussian white noise with average power N1
limited to the band 0 £ f f.W'l0 Alcos 2nf]t is the periodic signal
component, Azcos 2nf2t is a periodic component of self noise,
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The high frequency portion (W1 <f s'wz) of the array output is given

by
x(t) = nz(t) + s(t)[l +. a cos 2nf1t] (2)

nz(t) is the noise component and s(t)[} + a cos anlt] the signal component,
Both nz(t) and s(t) have the properties of Gaussian white.noise bandlimited
to wl < f Siwé s witl. average powers N2 and S respectively., a is the
modulation index of the sinusoidal amplitude modulation. In most cases of
practical interest a < <1, The implicit assumption that the modulation
envelope and the low frequency sinusoid are in phase is probably not
entirely rea’istic, However, it certainly represents the mos* favorable
situation and will therefore serve the purposos of this study.

The performance of the cross-correlation detector of Fig. 1 will bve
evaluated by comparison with that of a simple power deteétor operating on

the band wj <f swz.l A block diagram of the latter is shown in Fig. 2,

x(t) = nz(t) + s(t)[l + a cos anl{” y(t) = xz(t) fﬁ}éer- .

(0,W,)

squarer !’

Figure 2 Power Detector

Up to the low pass filter it is clearly identical with the high frequency
channel of the cross-correlation detector. The power detector uses the
change in average output due to the appearance of a siénal for detection
purposes, The performance of each instrumentation will be characterized by
a noise to signal ratio defined as follows:

2{ s Mean square value of fluctuating component of detector output
,S Square of average signal component of detector output

3)

1In practice Wi would be a relatively low frequency compared to wz so

that most of the total signal power would be concentrated in the range
wl - swz.
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DDA Derivation

The mean square fluctuation at the detector output is calculated most
readily by integrating the output power spectrum, Since the quantity y(t)
is of central importance in each instrumentation, the first task will be

the computation of its spectral density Gy(f).1

2
y(8) = x° () -{nz(t) « 8(6)[1 + a cos 2nf1t]}

2
- n22(t) + 2n2(t) s(t)[l + a cos 2nf1t] + sz(t)[l + a cos 2nf1t]

Let
! 2
n, (t) = n, () N,

s'(t) = sz(t) S

where N2 and S are average values of n22(t) and sz(t) respectively. The

1 1
spectra of n, (t) and of 8 (t) can then be written down immediately.2

1 1 1
1(f) = 2 £f)G (£-f ) df
Gy, (1) fen2< ) 6, (- 1)

G'(f) = 2 f@s(f') o (f-1')ar’

Since nz(t) and s(t) are statistically independent, the spectrum of

nz(t)s(t) can also be written down without difficulty.

Qo

ans(f) =[Gs(f') an(f -ty ar'

(L)

(5)
(6)

(7)

(8)

9)

1The notation G_{f) = spectral density of z(t) will be used throughout.

Spectral densities “are defined in such a manner that

_fez(f) af = E[zz]n

2W. B, Davenport and W, L, Root, Random Signals and Noise, section 12.2,

McGraw-Hill Book Co., 1958.
A7-4
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Before proceeding further it is convenient to rearrange Eq. (4) as

follows:
2 , : 2
y(t) = N2 + S(l * 5|+, (t) + 2n2(t) s(t) + s (t)[l # 'é'}
N —— .. L oo e 2
¥, Yo
1 & a2 1
+ Za[éz(t) s(t) + s (t?} cos 2nf,t + 5 8 (t) cos bnflt
Y3 Yl
a2
+ 2a S cos 2nf1t * S cos bnflt (10)
. — N - J
YS Y6

Note that y, is the only time-dependent term in Eq. (10) that doss not
vanish as a—0., Ifa<<1 Yo will therefore be the dominant component
of fluctuation noise. Its three terms are uncorrelated so that its spectrum

can be calculated easily from Egs. (7), (8) and (9). The result is ‘shown

in Fig. 3, 2
- 2 a2
+ cNZS + S i1 + =5
| W, - W
2 2 1
Hg + 2N28 + S .
n
w\yz
| |
| [
| I\ |
| '\ A4 I
'3
| boix )
i | : 4 \, i
-2W2 .wz.wl ‘sr\n'l-u.f2 —2W1 21'51 wz..wl ”"2*“1 2W2

Figure 3 Power Spectral Density for Vo [?ee Eq. (10%
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Results for the Pcwer Detector

The change in average output due to signal for the power detector is

simply the signal component of Yo Hence
2
2[, . &% . 2
5-8(1"{‘? = 5 for a <<} (11)

Under the very reasonable assumpticn Wo < fl the terms y5 and 76
do not appear in the power detecter ocutput at all, Furthermore, for
a <<l terms y3 and T, are clearly small compared to Yoo In practice
the final averaging filter undoubtedly has a bandwidth Wo satisfying
Wo < < Wl., In that ease the spectrum of Yo may be regarded as essentially

flat over the band C < f swo and one obtains

N2 + 2 N8 + §°
N%2¢c_ (0)w ¥2w (12)
) 2 3 W, =W
2 1
Equations (11) and (12 ) immediately yield the desired noise to signal
ratio of the power detector
LA NE e ans s 2N N,\?
NL y o Z - 1+ (23)
- S
S, Mo - © =%
Results for the Cross<Correlation Detectar
The blocking capacitor in the high frequency channel of Fig. 1
_eliminates the term y, in Eq, (10). 1Its effect on the other components
of y(t) will be regarded as negligible., The output z(t) of the blocking
capacitor is therefore given by °
z2(b) = yp(t) + y3(8) + y) () + 3o (b + yglt) (k)
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z(t) is one input into the multiplier, The second inpvt W(t) contains

three components. Hence the multiplier output u(t) is

15
u(t) = ) u(6) (5)
i=1 :
where
ul(t) = nl(thz(t) ué(t) = yz(t)Alcos 2af b ull(t) = y2(t)Azcos 2nf,t
uz(t) = nl(t)yB(t) u7(t) = y3(t)A1cos 2n2t ulz(t) = y3(t)Azcos 2nf,b
u3(t) = nl(tkyh(t) us(t) = yh(t)Alcos 2nf1t ulB(t) = yh(t)Azcos 2nf2t
uh(t) = nl(t)ys(t) u9(t) = yg(t)&lcos 2nf1t ulb(t) = ys(t)Azcos 2nf,t
us(t) = nl(tkyé(t) ulo(b) = yé(t)Alcos 2nf1t uls(t) = yé(t)A2cos 2nf,t
Inspection of Eqs, (10) and (16) makes it clear that only u9(t) provides an
average component of output. Hence immediately
S = (ah s) (A7)

The computation of }J is simplified by observing that all terms of Eq. (16)
except ul(t), ué(t) and ull(t) contain factors of a or gzv Therefore to a
first approximation for small a only ul(t), ué(t) and uil(t) need be
considered, As in the case of the power detector, Wo is assumed to be
sufficiently small so that only the zero frequency value of Gu(f) is of
interest, The two factors of each of the significant ul(t) are statistically
independent so that the corresponding spectra can be written down without

difficulty,

(0) e (£) df (18)
G Q) = G X
w M Ty, ~



or using Gy (f) as given by Fig, 3
2

o, + 82 N W
6L e ) (2 =5 ) 19)
L1 Wy - W2 W, - W
Similarly . )
fs N. + S
Gu (0) = il_. [Gy (fl) + Gy (.-fl)] ';'il_. e L_) ( 2 ) (20)
(3 L 2 2 2 W, --w1 W, ..wl
and
2 2 2
A A g N, + S)
a (o)--g-[a (£,) + & (-£,) & w5 o eamal e (21)
b b1 L L Y2 Y2 2 W, =Wy W, - W

ul(t )s ué(t) and u,y (t) are uncorrelated so that the approximate spectrum
of u(t) is simply the sum of the three spectral components. Recalling the
sp

previous assumption that £ ,f, <W, and W, <<W, one can neglect

172 1 | 2
wl fl f2
5 = and compared to unity. Then
wz-wl w2-w1 WZ-WI
™, + 8) A12 8,7
N‘k’ 2 W Nl 4 - (22)
w2 wl 2 2 |

Hence the figure of merit for the cross-correlation detector is

2—

N‘ ) 1. N 14

1l +— + N (23)

T2 7272
Wl ( b A

IV, Conclusjons

-
The ratio of the two figures of merit LEqs. (13) and (23 )] i

N5 N, a2
— Do a Ay A By (2L)
Vs 2 2
N PD. M7 N
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This raiia can be smaller than unity ounly if a > 0,707 and then only
2

if the power :%— of the sinusoidal signal component is large compared

A2
to N. and to -%_—- . It should be noted that the condition a > 0,707

1
is contrary to the assumption a < <1 repeatedly used in the analysis,
One is therefore forced to the conclusion that the cross-correlation
detector is decidedly inferior to the simple power detector under most
operating conditions of practical interest,
One could, of course, use the cross-correlation detector to
supplement rather than to replace the power detector, However, the

results of the present analysis indicate that the gains to be made by

such a procedure would be slight,
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